Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 609(7927): 569-574, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045288

RESUMO

Adipose tissues communicate with the central nervous system to maintain whole-body energy homeostasis. The mainstream view is that circulating hormones secreted by the fat convey the metabolic state to the brain, which integrates peripheral information and regulates adipocyte function through noradrenergic sympathetic output1. Moreover, somatosensory neurons of the dorsal root ganglia innervate adipose tissue2. However, the lack of genetic tools to selectively target these neurons has limited understanding of their physiological importance. Here we developed viral, genetic and imaging strategies to manipulate sensory nerves in an organ-specific manner in mice. This enabled us to visualize the entire axonal projection of dorsal root ganglia from the soma to subcutaneous adipocytes, establishing the anatomical underpinnings of adipose sensory innervation. Functionally, selective sensory ablation in adipose tissue enhanced the lipogenic and thermogenetic transcriptional programs, resulting in an enlarged fat pad, enrichment of beige adipocytes and elevated body temperature under thermoneutral conditions. The sensory-ablation-induced phenotypes required intact sympathetic function. We postulate that beige-fat-innervating sensory neurons modulate adipocyte function by acting as a brake on the sympathetic system. These results reveal an important role of the innervation by dorsal root ganglia of adipose tissues, and could enable future studies to examine the role of sensory innervation of disparate interoceptive systems.


Assuntos
Tecido Adiposo , Células Receptoras Sensoriais , Tecido Adiposo/inervação , Tecido Adiposo/metabolismo , Tecido Adiposo Bege/inervação , Tecido Adiposo Bege/metabolismo , Animais , Axônios , Metabolismo Energético , Gânglios Espinais/fisiologia , Homeostase , Hormônios/metabolismo , Camundongos , Especificidade de Órgãos , Células Receptoras Sensoriais/fisiologia , Gordura Subcutânea/inervação , Gordura Subcutânea/metabolismo , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia , Termogênese/genética
2.
Neuron ; 112(6): 959-971.e8, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266644

RESUMO

For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Fosforilação , Encéfalo/metabolismo , Neurônios/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Piruvatos/metabolismo , Genes Precoces
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA