Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 143: 106966, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995643

RESUMO

Activating mutations within FLT3 make up 30 % of all newly diagnosed acute myeloid leukemia (AML) cases, with the most common mutation being an internal tandem duplication (FLT3-ITD) in the juxtamembrane region (25 %). Currently, two generations of FLT3 kinase inhibitors have been developed, with three inhibitors clinically approved. However, treatment of FLT3-ITD mutated AML is limited due to the emergence of secondary clinical resistance, caused by multiple mechanism including on-target FLT3 secondary mutations - FLT3-ITD/D835Y and FLT3-ITD/F691L being the most common, as well as the off-target activation of alternative pathways including the BCR-ABL pathway. Through the screening of imidazo[1,2-a]pyridine derivatives, N-(3-methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine (compound 1) was identified as an inhibitor of both the FLT3-ITD and BCR-ABL pathways. Compound 1 potently inhibits clinically related leukemia cell lines driven by FLT3-ITD, FLT3-ITD/D835Y, FLT3-ITD/F691L, or BCR-ABL. Studies indicate that it mediates proapoptotic effects on cells by inhibiting FLT3 and BCR-ABL pathways, and other possible targets. Compound 1 is more potent against FLT3-ITD than BCR-ABL, and it may have other possible targets; however, compound 1 is first step for further optimization for the development of a balanced FLT3-ITD/BCR-ABL dual inhibitor for the treatment of relapsed FLT3-ITD mutated AML with multiple secondary clinical resistant subtypes such as FLT3-ITD/D835Y, FLT3-ITD/F691L, and cells co-expressing FLT3-ITD and BCR-ABL.


Assuntos
Leucemia Mieloide Aguda , Humanos , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Tirosina Quinase 3 Semelhante a fms/genética
2.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125790

RESUMO

With rapid modernization, environmental pollutants have become a major concern for human health, contributing to diseases such as asthma, cardiovascular diseases, obesity, infertility, and cancers [...].


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Humanos , Disruptores Endócrinos/efeitos adversos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Poluentes Ambientais/efeitos adversos , Animais , Exposição Ambiental/efeitos adversos
3.
Metabolomics ; 20(1): 6, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095785

RESUMO

INTRODUCTION: Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse human health outcomes. To explore the plausible associations between maternal PAH exposure and maternal/newborn metabolomic outcomes, we conducted a cross-sectional study among 75 pregnant people from Cincinnati, Ohio. METHOD: We quantified 8 monohydroxylated PAH metabolites in maternal urine samples collected at delivery. We then used an untargeted high-resolution mass spectrometry approach to examine alterations in the maternal (n = 72) and newborn (n = 63) serum metabolome associated with PAH metabolites. Associations between individual maternal urinary PAH metabolites and maternal/newborn metabolome were assessed using linear regression adjusted for maternal and newborn factors while accounting for multiple testing with the Benjamini-Hochberg method. We then conducted functional analysis to identify potential biological pathways. RESULTS: Our results from the metabolome-wide associations (MWAS) indicated that an average of 1% newborn metabolome features and 2% maternal metabolome features were associated with maternal urinary PAH metabolites. Individual PAH metabolite concentrations in maternal urine were associated with maternal/newborn metabolome related to metabolism of vitamins, amino acids, fatty acids, lipids, carbohydrates, nucleotides, energy, xenobiotics, glycan, and organic compounds. CONCLUSION: In this cross-sectional study, we identified associations between urinary PAH concentrations during late pregnancy and metabolic features associated with several metabolic pathways among pregnant women and newborns. Further studies are needed to explore the mediating role of the metabolome in the relationship between PAHs and adverse pregnancy outcomes.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Humanos , Gravidez , Recém-Nascido , Feminino , Hidrocarbonetos Policíclicos Aromáticos/urina , Estudos Transversais , Metabolômica , Metaboloma , Aminoácidos/metabolismo
4.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372939

RESUMO

Endocrine-disrupting chemicals (EDCs) are chemicals, either natural or synthetic, that can interfere with the production, distribution, function, metabolism, or excretion of hormones in our body [...].


Assuntos
Disruptores Endócrinos , Sistema Endócrino , Humanos , Hormônios/farmacologia , Disruptores Endócrinos/toxicidade
5.
Bioinformatics ; 35(7): 1094-1097, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184051

RESUMO

MOTIVATION: Both ß-value and M-value have been used as metrics to measure methylation levels. The M-value is more statistically valid for the differential analysis of methylation levels. However, the ß-value is much more biologically interpretable and needs to be reported when M-value method is used for conducting differential methylation analysis. There is an urgent need to know how to interpret the degree of differential methylation from the M-value. In M-value linear regression model, differential methylation M-value ΔM can be easily obtained from the coefficient estimate, but it is not straightforward to get the differential methylation ß-value, Δß since it cannot be obtained from the coefficient alone. RESULTS: To fill the gap, we have built a bridge to connect the statistically sound M-value linear regression model and the biologically interpretable Δß. In this article, three methods were proposed to calculate differential methylation values, Δß from M-value linear regression model and compared with the Δß directly obtained from ß-value linear regression model. We showed that under the condition that M-value linear regression model is correct, the method M-model-coef is the best among the four methods. M-model-M-mean method works very well too. If the coefficients α0, α2,…αp are not given (as 'MethLAB' package), the M-model-M-mean method should be used. The Δß directly obtained from ß-value linear regression model can give very biased results, especially when M-values are not in (-2, 2) or ß-values are not in (0.2, 0.8). AVAILABILITY AND IMPLEMENTATION: The dataset for example is available at the National Center for Biotechnology Information Gene Expression Omnibus repository, GSE104778. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Projetos de Pesquisa , Modelos Lineares
6.
FASEB J ; 33(7): 8335-8348, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991008

RESUMO

Damage-induced long noncoding RNA (DINO) is a long noncoding RNA that directly interacts with p53 and thereby enhances p53 stability and activity in response to various cellular stresses. Here, we demonstrate that nuclear receptor subfamily 2 group E member 3 (NR2E3) plays a crucial role in maintaining active DINO epigenetic status for its proper induction and subsequent p53 activation. In acetaminophen (APAP)- or carbon tetrachloride-induced acute liver injuries, NR2E3 knockout (KO) mice exhibited far more severe liver injuries due to impaired DINO induction and p53 activation. Mechanistically, NR2E3 loss both in vivo and in vitro induced epigenetic DINO repression accompanied by reduced DINO chromatin accessibility. Furthermore, compared with the efficient reversal by a typical antidote N-acetylcysteine (NAC) treatment of APAP-induced liver injury in wild-type mice, the liver injury of NR2E3 KO mice was not effectively reversed, indicating that an intact NR2E3-DINO-p53-signaling axis is essential for NAC-mediated recovery against APAP-induced hepatotoxicity. These findings establish that NR2E3 is a critical component in p53 activation and a novel susceptibility factor to drug- or toxicant-induced acute liver injuries.-Khanal, T., Leung, Y.-K., Jiang, W., Timchenko, N., Ho, S.-M., Kim, K. NR2E3 is a key component in p53 activation by regulating a long noncoding RNA DINO in acute liver injuries.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Falência Hepática Aguda/metabolismo , Receptores Nucleares Órfãos/metabolismo , RNA Longo não Codificante/biossíntese , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/farmacologia , Acetilcisteína/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Epigênese Genética/efeitos dos fármacos , Células Hep G2 , Humanos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Falência Hepática Aguda/patologia , Camundongos , Camundongos Knockout , Receptores Nucleares Órfãos/genética , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética
7.
Bioinformatics ; 32(23): 3667-3669, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522082

RESUMO

MOTIVATION: 5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are important epigenetic regulators of gene expression. 5mC and 5hmC levels can be computationally inferred at single base resolution using sequencing or array data from paired DNA samples that have undergone bisulfite and oxidative bisulfite conversion. Current estimation methods have been shown to produce irregular estimates of 5hmC level or are extremely computation intensive. RESULTS: We developed an efficient method oxBS-MLE based on binomial modeling of paired bisulfite and oxidative bisulfite data from sequencing or array analysis. Evaluation in several datasets showed that it outperformed alternative methods in estimate accuracy and computation speed. AVAILABILITY AND IMPLEMENTATION: oxBS-MLE is implemented in Bioconductor package ENmix. CONTACT: niulg@ucmail.uc.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Biologia Computacional/métodos , Metilação de DNA , DNA/química , Ilhas de CpG , Modelos Teóricos , Análise de Sequência de DNA
8.
Nanomedicine ; 13(2): 403-410, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27520723

RESUMO

In this study, a development of a novel calcium phosphate-polymer hybrid nanoparticle system is reported.The nanoparticle system can co-encapsulate and co-deliver a combination of therapeutic agents with different physicochemical properties (i.e., inhibitors for microRNA-221 and microRNA-222 (miRi-221/222) and paclitaxel (pac)).miRi-221/222 are hydrophilic and were encapsulated with calcium phosphate by co-precipitation in a water-in-oil emulsion.The precipitates were then coated with an anionic lipid, dioleoylphosphatidic acid (DOPA), to co-encapsulate hydrophobic paclitaxel outside the hydrophilic precipitates and inside the same nanoparticle.The nanoparticles formed by following this approach had a size of about ≤100nm and contained both lipid-coated calcium phosphate/miRi and paclitaxel.This nanoparticle system was found to simultaneously deliver paclitaxel and miRi-221/222 to their intracellular targets, leading to inhibit proliferative mechanisms of miR-221/222 and thus significantly enhancing the therapeutic efficacy of paclitaxel.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Nanopartículas , Paclitaxel/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fosfatos de Cálcio , Linhagem Celular Tumoral , Humanos , MicroRNAs/antagonistas & inibidores , Polímeros
9.
J Urol ; 195(6): 1760-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26804755

RESUMO

PURPOSE: Existing data regarding the expression of estrogen receptors (ERs) and prostate cancer outcomes have been limited. We evaluated the relationship of expression profiles of ERß subtypes and the ER GPR30 (G-protein-coupled receptor-30) with patient factors at diagnosis and outcomes following radical prostatectomy. MATERIALS AND METHODS: Tissue microarrays constructed using samples from 566 men with long-term clinical followup were analyzed by immunohistochemistry targeting ERß1, ERß2, ERß5 and GPR30. An experienced pathologist scored receptor distribution and staining intensity. Tumor staining characteristics were evaluated for associations with patient characteristics, recurrence-free survival and prostate cancer specific mortality following radical prostatectomy. RESULTS: Prostate cancer cells had unique receptor subtype staining patterns. ERß1 demonstrated predominantly nuclear localization while ERß2, ERß5 and GPR30 were predominantly cytoplasmic. After controlling for patient factors intense cytoplasmic ERß1 staining was independently associated with time to recurrence (HR 1.7, 95% CI 1.1-2.6, p = 0.01) and prostate cancer specific mortality (HR 6.6, 95% CI 1.8-24.9, p = 0.01). Intense nuclear ERß2 staining was similarly independently associated with prostate cancer specific mortality (HR 3.9, 95% CI 1.1-13.4, p = 0.03). Patients with cytoplasmic ERß1 and nuclear ERß2 co-staining had significantly worse 15-year prostate cancer specific mortality than patients with expression of only cytoplasmic ERß1, only nuclear ERß2 and neither ER (16.4%, 4.3%, 0.0% and 2.0 %, respectively, p = 0.001). CONCLUSIONS: Increased cytoplasmic ERß1 and nuclear ERß2 expression is associated with worse cancer specific outcomes following radical prostatectomy. These findings suggest that tumor ERß1 and ERß2 staining patterns provide prognostic information on patients treated with radical prostatectomy.


Assuntos
Receptor beta de Estrogênio/metabolismo , Próstata/metabolismo , Prostatectomia/métodos , Neoplasias da Próstata/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Idoso , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Próstata/patologia , Próstata/cirurgia , Prostatectomia/efeitos adversos , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Análise de Sobrevida , Análise Serial de Tecidos
10.
Biol Reprod ; 93(6): 147, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510865

RESUMO

Bisphenol A (BPA) is an endocrine disruptor associated with poor pregnancy outcomes in human and rodents. The effects of butterfat diets on embryo implantation and whether it modifies BPA's actions are currently unknown. We aimed to determine the effects of butterfat diet on embryo implantation success in female rats exposed to an environmentally relevant dose of BPA. Female Sprague-Dawley rats were exposed to dietary butterfat (10% or 39% kcal/kg body weight [BW]) in the presence or absence of BPA (250 µg/kg BW) or ethinylestradiol (0.1 µg/kg BW) shortly before and during pregnancy to assess embryo implantation potentials by preimplantation development and transport, in vitro blastulation, outgrowth, and implantation. On gestational day (GD) 4.5, rats treated with BPA alone had higher serum total BPA level (2.3-3.7 ng/ml). They had more late-stage preimplantation embryos, whereas those receiving high butterfat (HBF) diet had the most advanced-stage embryos; dams cotreated with HBF and BPA had the most number of advanced embryos. BPA markedly delayed embryo transport to the uterus, but neither amount of butterfat had modifying effects. An in vitro implantation assay showed HBF doubled the outgrowth area, with BPA having no effect. In vivo, BPA reduced the number of implanted embryos on GD8, and cotreatment with HBF eliminated this adverse effect. HBF diet overall resulted in more and larger GD8 embryos. This study reveals the implantation disruptive effects of maternal exposure to an environmentally relevant dose of BPA and identifies HBF diet as a modifier of BPA in promoting early embryonic health.


Assuntos
Compostos Benzidrílicos/farmacologia , Dieta , Implantação do Embrião/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Ghee , Fenóis/farmacologia , Animais , Etinilestradiol/farmacologia , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley
11.
J Biol Chem ; 288(35): 25038-25052, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23857583

RESUMO

Estrogen receptor (ER) ß1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERß1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERß1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERß1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERß1 and Tip60 at ERE and AP-1 sites of ERß1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERß1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERß1.


Assuntos
Receptor beta de Estrogênio/metabolismo , Histona Acetiltransferases/metabolismo , Elementos de Resposta/fisiologia , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia , Acetilação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Receptor beta de Estrogênio/genética , Células HEK293 , Histona Acetiltransferases/genética , Humanos , Lisina Acetiltransferase 5 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
12.
Eur J Med Chem ; 264: 115977, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056299

RESUMO

FLT3 activating mutations are detected in approximately 30 % of newly diagnosed acute myeloid leukemia (AML) cases, most commonly consisting of internal tandem duplication (ITD) mutations in the juxtamembrane region. Recently, several FLT3 inhibitors have demonstrated clinical activity and three are currently approved - midostaurin, quizartinib, and gilteritinib. Midostaurin is a first-generation FLT3 inhibitor with minimal activity as monotherapy. Midostaurin lacks selectivity and is only approved by the USFDA for use in combination with other chemotherapy agents. The second-generation inhibitors quizartinib and gilteritinib display improved specificity and selectivity, and have been approved for use as monotherapy. However, their clinical efficacies are limited in part due to the emergence of drug-resistant FLT3 secondary mutations in the tyrosine kinase domain at positions D835 and F691. Therefore, in order to overcome drug resistance and further improve outcomes, new compounds targeting FLT3-ITD with secondary mutants are urgently needed. In this study, through the structural modification of a reported compound Ling-5e, we identified compound 24 as a FLT3 inhibitor that is equally potent against FLT3-ITD and the clinically relevant mutants FLT3-ITD/D835Y, and FLT3-ITD/F691L. Its inhibitory effects were demonstrated in both cell viability assays and western blots analyses. When tested against cell lines lacking activating mutations in FLT3, no non-specific cytotoxicity effect was observed. Interestingly, molecular docking results showed that compound 24 may adopt different binding conformations with FLT3-F691L compared to FLT3, which may explain its retained activity against FLT3-ITD/F691L. In summary, compound 24 has inhibition potency on FLT3 comparable to gilteritinib, but a more balanced inhibition on FLT3 secondary mutations, especially FLT3-ITD/F691L which is gilteritinib resistant. Compound 24 may serve as a promising lead for the drug development of either primary or relapsed AML with FLT3 secondary mutations.


Assuntos
Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Mutação , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Piridinas/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética
13.
Adv Sci (Weinh) ; 11(29): e2308539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38790135

RESUMO

The orphan nuclear receptor NR2E3 (Nuclear receptor subfamily 2 group E, Member 3) is an epigenetic player that modulates chromatin accessibility to activate p53 during liver injury. Nonetheless, a precise tumor suppressive and epigenetic role of NR2E3 in hepatocellular carcinoma (HCC) development remains unclear. HCC patients expressing low NR2E3 exhibit unfavorable clinical outcomes, aligning with heightened activation of the Wnt/ß-catenin signaling pathway. The murine HCC models utilizing NR2E3 knockout mice consistently exhibits accelerated liver tumor formation accompanied by enhanced activation of Wnt/ß-catenin signaling pathway and inactivation of p53 signaling. At cellular level, the loss of NR2E3 increases the acquisition of aggressive cancer cell phenotype and tumorigenicity and upregulates key genes in the WNT/ß-catenin pathway with increased chromatin accessibility. This event is mediated through increased formation of active transcription complex involving Sp1, ß-catenin, and p300, a histone acetyltransferase, on the promoters of target genes. These findings demonstrate that the loss of NR2E3 activates Wnt/ß-catenin signaling at cellular and organism levels and this dysregulation is associated with aggressive HCC development and poor clinical outcomes. In summary, NR2E3 is a novel tumor suppressor with a significant prognostic value, maintaining epigenetic homeostasis to suppress the Wnt/ß-catenin signaling pathway that promotes HCC development.


Assuntos
Carcinoma Hepatocelular , Epigênese Genética , Neoplasias Hepáticas , Camundongos Knockout , Via de Sinalização Wnt , beta Catenina , Animais , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Via de Sinalização Wnt/genética , Camundongos , Epigênese Genética/genética , beta Catenina/metabolismo , beta Catenina/genética , Humanos , Modelos Animais de Doenças , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral
14.
Epigenetics Commun ; 4(1): 4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962689

RESUMO

Background: Exposure to environmental chemicals such as phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs) during pregnancy can increase the risk of adverse newborn outcomes. We explored the associations between maternal exposure to select environmental chemicals and DNA methylation in cord blood mononuclear cells (CBMC) and placental tissue (maternal and fetal sides) to identify potential mechanisms underlying these associations. Method: This study included 75 pregnant individuals who planned to give birth at the University of Cincinnati Hospital between 2014 and 2017. Maternal urine samples during the delivery visit were collected and analyzed for 37 biomarkers of phenols (12), phthalates (13), phthalate replacements (4), and PAHs (8). Cord blood and placenta tissue (maternal and fetal sides) were also collected to measure the DNA methylation intensities using the Infinium HumanMethylation450K BeadChip. We used linear regression, adjusting for potential confounders, to assess CpG-specific methylation changes in CBMC (n = 54) and placenta [fetal (n = 67) and maternal (n = 68) sides] associated with gestational chemical exposures (29 of 37 biomarkers measured in this study). To account for multiple testing, we used a false discovery rate q-values < 0.05 and presented results by limiting results with a genomic inflation factor of 1±0.5. Additionally, gene set enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomics pathways. Results: Among the 29 chemical biomarkers assessed for differential methylation, maternal concentrations of PAH metabolites (1-hydroxynaphthalene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 1-hydroxypyrene), monocarboxyisononyl phthalate, mono-3-carboxypropyl phthalate, and bisphenol A were associated with altered methylation in placenta (maternal or fetal side). Among exposure biomarkers associated with epigenetic changes, 1-hydroxynaphthalene, and mono-3-carboxypropyl phthalate were consistently associated with differential CpG methylation in the placenta. Gene enrichment analysis indicated that maternal 1-hydroxynaphthalene was associated with lipid metabolism and cellular processes of the placenta. Additionally, mono-3-carboxypropyl phthalate was associated with organismal systems and genetic information processing of the placenta. Conclusion: Among the 29 chemical biomarkers assessed during delivery, 1-hydroxynaphthalene and mono-3-carboxypropyl phthalate were associated with DNA methylation in the placenta. Supplementary Information: The online version contains supplementary material available at 10.1186/s43682-024-00027-7.

15.
Transl Vis Sci Technol ; 13(8): 30, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39163016

RESUMO

Purpose: Central retinal artery occlusion (CRAO) is an ocular emergency that results from acute blockage of the blood supply to the retina and leads to a sudden vision loss. Other forms of ischemic retinopathies include diabetic retinopathy (DR), which involves chronic retinal ischemia and remains the leading cause of blindness in working-age adults. This study is the first to conduct a proteomic analysis of aqueous humor (AH) from patients with CRAO with a comparative analysis using vitreous humor (VH) samples from patients with DR. Methods: AH samples were collected from 10 patients with CRAO undergoing paracentesis and 10 controls undergoing cataract surgery. VH samples were collected from 10 patients with DR and 10 non-diabetic controls undergoing pars plana vitrectomy (PPV). Samples were analyzed using mass spectrometry. Results: Compared with controls, AH levels of 36 differentially expressed proteins (DEPs) were identified in patients with CRAO. Qiagen Ingenuity Pathway Analysis (IPA) revealed 11 proteins linked to ophthalmic diseases. Notably, enolase 2, a glycolysis enzyme isoform primarily expressed in neurons, was upregulated, suggesting neuronal injury and enzyme release. Additionally, clusterin, a protective glycoprotein, was downregulated. ELISA was conducted to confirm proteomics data. VH samples from patients with DR exhibited changes in a distinct set of proteins, including ones previously reported in the literature. Conclusions: The study provides novel insights into CRAO pathophysiology with multiple hits identified. Proteomic results differed between DR and CRAO studies, likely due to the different pathophysiology and disease duration. Translational Relevance: This is the first proteomic analysis of CRAO AH, with the potential to identify future therapeutic targets.


Assuntos
Humor Aquoso , Proteômica , Oclusão da Artéria Retiniana , Humanos , Humor Aquoso/metabolismo , Humor Aquoso/química , Proteômica/métodos , Oclusão da Artéria Retiniana/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Proteínas do Olho/metabolismo , Corpo Vítreo/metabolismo , Vitrectomia , Fosfopiruvato Hidratase/metabolismo , Paracentese , Espectrometria de Massas
16.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067237

RESUMO

Biomarkers play a crucial role in the diagnosis, prognosis, and therapeutics of cancer. We use biomarkers to identify, image, monitor, and target cancer. In many respects, the discovery of pertinent biomarkers that distinguish fulminant from indolent neoplasms and sensitive from refractory malignancies would be a holy grail of cancer research and therapy. We propose that a stem cell versus genetic theory of cancer may not only enable us to track and trace the biological evolution of cancer but also empower us to attenuate its clinical course and optimize the clinical outcome of patients with cancer. Hence, a biomarker that identifies cancer stem cells (CSCs) and distinguishes them from non-CSCs may serve to elucidate inter-tumoral and intra-tumoral heterogeneity, elevate the values and utility of current prognostic and predictive tests, and enhance drug versus therapy development in cancer care. From this perspective, we focus on CSC biomarkers and discuss stemness or stem-like biomarkers in the context of a unified theory and a consideration of stem cell versus genetic origin. We review their role in primary and mixed tumors, in the elaboration of tumor subtypes, and in the imaging and monitoring of minimal residual diseases. We investigate how scientific theories influence the direction of scientific research and interpretation of experimental results, and how genomics and epigenomics affect the dynamics and trajectories of biomarkers in the conduct of cancer research and in the practice of cancer care.

17.
Oncotarget ; 13: 46-60, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35018219

RESUMO

G-1, a GPER1 agonist, was shown to inhibit the growth of castration-resistant mouse xenografts but not their parental androgen-dependent tumors. It is currently unknown how the androgen receptor (AR) represses GPER1 expression. Here, we found that two GPER1 mRNA variants (GPER1v2 and GPER1v4) were transcriptionally repressed, not via transcript destabilization, by the androgen-activated AR. Although no AR binding was found in all active promoters near GPER1, data from promoter assays suggested that both variants' promoters were inhibited by androgen treatment. Site-directed mutagenesis on Sp1/Sp3 binding sites revealed their role in supporting the basal expression of GPER1. Knockdown of Sp1 and Sp3 together but not separately repressed GPER1 expression whereas overexpression of both Sp1 and Sp3 together was required to alleviate AR repression of GPER1. Based on the chromatin immunoprecipitation data, Sp3 was found to bind to the promoters prior to the binding of Sp1 and RNA polymerase II. However, the binding of all three transcription factors was inhibited by DHT treatment. Concordantly, DHT treatment induced nuclear interactions between AR and Sp1 or Sp3. Taken together, these results indicate that AR represses transcription of GPER1 by binding to Sp1 and Sp3 independently to prevent their transactivation of the GPER1 promoters.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Androgênios , Animais , Sítios de Ligação/genética , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Receptores Androgênicos/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp3/metabolismo
18.
J Med Chem ; 65(2): 1536-1551, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35081714

RESUMO

Mutations of the rearranged during transfection (RET) kinase are frequently reported in cancer, which make it as an attractive therapeutic target. Herein, we discovered a series of N-trisubstituted pyrimidine derivatives as potent inhibitors for both wild-type (wt) RET and RETV804M, which is a resistant mutant for several FDA-approved inhibitors. The X-ray structure of a representative inhibitor with RET revealed that the compound binds in a unique pose that bifurcates beneath the P-loop and confirmed the compound as a type I inhibitor. Through the structure-activity relationship (SAR) study, compound 20 was identified as a lead compound, showing potent inhibition of both RET and RETV804M. Additionally, compound 20 displayed potent antiproliferative activity of CCDC6-RET-driven LC-2/ad cells. Analysis of RET phosphorylation indicated that biological activity was mediated by RET inhibition. Collectively, N-trisubstituted pyrimidine derivatives could serve as scaffolds for the discovery and development of potent inhibitors of type I RET and its gatekeeper mutant for the treatment of RET-driven cancers.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Pirimidinas/química , Adenocarcinoma de Pulmão/patologia , Apoptose , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-ret/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Cicatrização
19.
Eur J Med Chem ; 225: 113763, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34419892

RESUMO

The tumor microenvironment contains high concentrations of TGFß, a crucial immunosuppressive cytokine. TGFß stimulates immune escape by promoting peripheral immune tolerance to avoid tumoricidal attack. Small-molecule inhibitors of TGFßR1 are a prospective method for next-generation immunotherapies. In the present study, we identified selective 4-aminoquinoline-based inhibitors of TGFßR1 through structural and rational-based design strategies. This led to the identification of compound 4i, which was found to be selective for TGFßR1 with the exception of MAP4K4 in the kinase profiling assay. The compound was then further optimized to remove MAP4K4 activity, since MAP4K4 is vital for proper T-cell function and its inhibition could exacerbate tumor immunosuppression. Optimization efforts led to compound 4s that inhibited TGFßR1 at an IC50 of 0.79 ± 0.19 nM with 2000-fold selectivity against MAP4K4. Compound 4s represents a highly selective TGFßR1 inhibitor that has potential applications in immuno-oncology.


Assuntos
Aminoquinolinas/farmacologia , Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Estrutura Molecular , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I/imunologia , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 223: 113660, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34246853

RESUMO

TGFß is crucial for the homeostasis of epithelial and neural tissues, wound repair, and regulating immune responses. Its dysregulation is associated with a vast number of diseases, of which modifying the tumor microenvironment is one of vital clinical interest. Despite various attempts, there is still no FDA-approved therapy to inhibit the TGFß pathway. Major mainstream approaches involve impairment of the TGFß pathway via inhibition of the TGFßRI kinase. With the purpose to identify non-receptor kinase-based inhibitors to impair TGFß signaling, an in-house chemical library was enriched, through a computational study, to eliminate TGFßRI kinase activity. Selected compounds were screened against a cell line engineered with a firefly luciferase gene under TGFß-Smad-dependent transcriptional control. Results indicated moderate potency for a molecule with phthalazine core against TGFß-Smad signaling. A series of phthalazine compounds were synthesized and evaluated for potency. The most promising compound (10p) exhibited an IC50 of 0.11 ± 0.02 µM and was confirmed to be non-cytotoxic up to 12 µM, with a selectivity index of approximately 112-fold. Simultaneously, 10p was confirmed to reduce the Smad phosphorylation using Western blot without exhibiting inhibition on the TGFßRI enzyme. This study identified a novel small-molecule scaffold that targets the TGFß pathway via a non-receptor-kinase mechanism.


Assuntos
Ftalazinas/química , Fator de Crescimento Transformador beta/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Ftalazinas/metabolismo , Ftalazinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/química , Proteínas Smad/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA