Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(16): 10899-909, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25820412

RESUMO

Many enzymes require a specific monovalent cation (M(+)), that is either Na(+) or K(+), for optimal activity. While high selectivity M(+) sites in transport proteins have been extensively studied, enzyme M(+) binding sites generally have lower selectivity and are less characterized. Here we study the M(+) binding site of the model enzyme E. coli ß-galactosidase, which is about 10 fold selective for Na(+) over K(+). Combining data from X-ray crystallography and computational models, we find the electrostatic environment predominates in defining the Na(+) selectivity. In this lower selectivity site rather subtle influences on the electrostatic environment become significant, including the induced polarization effects of the M(+) on the coordinating ligands and the effect of second coordination shell residues on the charge distribution of the primary ligands. This work expands the knowledge of ion selectivity in proteins to denote novel mechanisms important for the selectivity of M(+) sites in enzymes.


Assuntos
Escherichia coli/enzimologia , Potássio/metabolismo , Sódio/metabolismo , beta-Galactosidase/metabolismo , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica , Eletricidade Estática , Especificidade por Substrato , Termodinâmica , beta-Galactosidase/química
2.
Interdiscip Sci ; 2(1): 12-20, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20640793

RESUMO

The hydration of three different monovalent cations was studied with a number of theoretical approaches ranging from classical MD simulations to MD simulations with a polarizable force field and finally to QM/MM MD. A particular emphasis was put on the development of a novel polarizable potential function for studies of Tl(+) hydration enabling the ability to reproduce key features observed in QM/MM simulations. We extended the CHARMM-deMon interface developed previously to studies of ion hydration with QM/MM simulations. All simulations reproduce experimental data on the Radial Distribution Function (RDF) accurately. However, notable differences start to emerge in the description of probabilities for coordination states of an ion if explicit account of polarization is included.


Assuntos
Cátions , Biologia Computacional/métodos , Potássio/química , Sódio/química , Telúrio/química , Algoritmos , Biofísica , Simulação por Computador , Íons , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Solventes/química , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA