Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(4): e2306270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702136

RESUMO

Persistent and uncontrolled inflammation is the root cause of various debilitating diseases. Given that interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical modulator of inflammation, inhibition of its activity with selective drug molecules (IRAK4 inhibitors) represents a promising therapeutic strategy for inflammatory disorders. To exploit the full potential of this treatment approach, drug carriers for efficient delivery of IRAK4 inhibitors to inflamed tissues are essential. Herein, the first nanoparticle-based platform for the targeted systemic delivery of a clinically tested IRAK4 inhibitor, PF-06650833, with limited aqueous solubility (57 µg mL-1 ) is presented. The developed nanocarriers increase the intrinsic aqueous dispersibility of this IRAK4 inhibitor by 40 times. A targeting peptide on the surface of nanocarriers significantly enhances their accumulation after intravenous injection in inflamed tissues of mice with induced paw edema and ulcerative colitis when compared to non-targeted counterparts. The delivered IRAK4 inhibitor markedly abates inflammation and dramatically suppresses paw edema, mitigates colitis symptoms, and reduces proinflammatory cytokine levels in the affected tissues. Importantly, repeated injections of IRAK4 inhibitor-loaded nanocarriers have no acute toxic effect on major organs of mice. Therefore, the developed nanocarriers have the potential to significantly improve the therapeutic efficacy of IRAK4 inhibitors for different inflammatory diseases.


Assuntos
Colite , Quinases Associadas a Receptores de Interleucina-1 , Camundongos , Animais , Quinases Associadas a Receptores de Interleucina-1/química , Citocinas , Inflamação/tratamento farmacológico , Edema
2.
Small ; 18(44): e2204436, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098251

RESUMO

This study presents the first messenger RNA (mRNA) therapy for metastatic ovarian cancer and cachexia-induced muscle wasting based on lipid nanoparticles that deliver follistatin (FST) mRNA predominantly to cancer clusters following intraperitoneal administration. The secreted FST protein, endogenously synthesized from delivered mRNA, efficiently reduces elevated activin A levels associated with aggressive ovarian cancer and associated cachexia. By altering the cancer cell phenotype, mRNA treatment prevents malignant ascites, delays cancer progression, induces the formation of solid tumors, and preserves muscle mass in cancer-bearing mice by inhibiting negative regulators of muscle mass. Finally, mRNA therapy provides synergistic effects in combination with cisplatin, increasing the survival of mice and counteracting muscle atrophy induced by chemotherapy and cancer-associated cachexia. The treated mice develop few nonadherent tumors that are easily resected from the peritoneum. Clinically, this nanomedicine-based mRNA therapy can facilitate complete cytoreduction, target resistance, improve resilience during aggressive chemotherapy, and improve survival in advanced ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Folistatina/metabolismo , Folistatina/farmacologia , Folistatina/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/terapia , Músculo Esquelético/metabolismo
3.
Brain Behav Immun ; 97: 102-118, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245812

RESUMO

Lipocalin 2 (LCN2) is a pleiotropic molecule that is induced in the central nervous system (CNS) in several acute and chronic pathologies. The acute induction of LCN2 evolved as a beneficial process, aimed at combating bacterial infection through the sequestration of iron from pathogens, while the role of LCN2 during chronic, non-infectious disease remains unclear, and recent studies suggest that LCN2 is neurotoxic. However, whether LCN2 is sufficient to induce behavioral and cognitive alterations remains unclear. In this paper, we sought to address the role of cerebral LCN2 on cognition in both acute and chronic settings. We demonstrate that LCN2 is robustly induced in the CNS during both acute and chronic inflammatory conditions, including LPS-based sepsis and cancer cachexia. In vivo, LPS challenge results in a global induction of LCN2 in the central nervous system, while cancer cachexia results in a distribution specific to the vasculature. Similar to these in vivo observations, in vitro modeling demonstrated that both glia and cerebral endothelium produce and secrete LCN2 when challenged with LPS, while only cerebral endothelium secrete LCN2 when challenged with cancer-conditioned medium. Chronic, but not short-term, cerebral LCN2 exposure resulted in reduced hippocampal neuron staining intensity, an increase in newborn neurons, microglial activation, and increased CNS immune cell infiltration, while gene set analyses suggested these effects were mediated through melanocortin-4 receptor independent mechanisms. RNA sequencing analyses of primary hippocampal neurons revealed a distinct transcriptome associated with prolonged LCN2 exposure, and ontology analysis was suggestive of altered neurite growth and abnormal spatial learning. Indeed, LCN2-treated hippocampal neurons display blunted neurite processes, and mice exposed to prolonged cerebral LCN2 levels experienced a reduction in spatial reference memory as indicated by Y-maze assessment. These findings implicate LCN2 as a pathologic mediator of cognitive decline in the setting of chronic disease.


Assuntos
Disfunção Cognitiva , Neurônios , Animais , Hipocampo/metabolismo , Lipocalina-2 , Camundongos , Neuroglia/metabolismo , Neurônios/metabolismo
4.
Glia ; 68(7): 1479-1494, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32039522

RESUMO

Microglia in the mediobasal hypothalamus (MBH) respond to inflammatory stimuli and metabolic perturbations to mediate body composition. This concept is well studied in the context of high fat diet induced obesity (HFDO), yet has not been investigated in the context of cachexia, a devastating metabolic syndrome characterized by anorexia, fatigue, and muscle catabolism. We show that microglia accumulate specifically in the MBH early in pancreatic ductal adenocarcinoma (PDAC)-associated cachexia and assume an activated morphology. Furthermore, we observe astrogliosis in the MBH and hippocampus concurrent with cachexia initiation. We next show that circulating immune cells resembling macrophages infiltrate the MBH. PDAC-derived factors induced microglia to express a transcriptional profile in vitro that was distinct from that induced by lipopolysaccharide (LPS). Microglia depletion through CSF1-R antagonism resulted in accelerated cachexia onset and increased anorexia, fatigue, and muscle catabolism during PDAC. This corresponded with increased hypothalamic-pituitary-adrenal (HPA) axis activation. CSF1-R antagonism had little effect on inflammatory response in the circulation, liver, or tumor. These findings demonstrate that microglia are protective against PDAC cachexia and provide mechanistic insight into this function.


Assuntos
Caquexia/metabolismo , Hipotálamo/metabolismo , Microglia/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Caquexia/imunologia , Metabolismo Energético/fisiologia , Gliose/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Obesidade/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
5.
Brain Behav Immun ; 82: 338-353, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31499172

RESUMO

Toll-like receptors 7 and 8 (TLR7 and TLR8) are endosomal pattern recognition receptors that detect a variety of single-stranded RNA species. While TLR7/8 agonists have robust therapeutic potential, clinical utility of these agents is limited by sickness responses associated with treatment induction. To understand the kinetics and mechanism of these responses, we characterized the acute and chronic effects of TLR7 stimulation. Single-cell RNA-sequencing studies, RNAscope, and radiolabeled in situ hybridization demonstrate that central nervous system gene expression of TLR7 is exclusive to microglia. In vitro studies demonstrate that microglia are highly sensitive to TLR7 stimulation, and respond in a dose-dependent manner to the imidazoquinoline R848. In vivo, both intraperitoneal (IP) and intracerebroventricular (ICV) R848 induce acute sickness responses including hypophagia, weight loss, and decreased voluntary locomotor activity, associated with increased CNS pro-inflammatory gene expression and changes to glial morphology. However, chronic daily IP R848 resulted in rapid tachyphylaxis of behavioral and molecular manifestations of illness. In microglial in vitro assays, pro-inflammatory transcriptional responses rapidly diminished in the context of repeated R848. In addition to TLR7 desensitization, we found that microglia become partially refractory to lipopolysaccharide (LPS) following R848 pretreatment, associated with induction of negative regulators A20 and Irak3. Similarly, mice pre-treated with R848 demonstrate reduced sickness responses, hypothalamic inflammation, and hepatic inflammation in response to LPS. These data combined demonstrate that TLR7 stimulation induces acute behavioral and molecular evidence of sickness responses. Following prolonged dosing, R848 induces a refractory state to both TLR7 and TLR4 activation, consistent with induced immune tolerance.


Assuntos
Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/imunologia , Microglia/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/imunologia , Animais , Comportamento Animal , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Citocinas/imunologia , Feminino , Imidazóis/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Taquifilaxia/imunologia , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/imunologia
6.
Brain Behav Immun ; 73: 364-374, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29852290

RESUMO

Hypothalamic inflammation is a key component of acute sickness behavior and cachexia, yet mechanisms of inflammatory signaling in the central nervous system remain unclear. Previous work from our lab and others showed that while MyD88 is an important inflammatory signaling pathway for sickness behavior, MyD88 knockout (MyD88KO) mice still experience sickness behavior after inflammatory stimuli challenge. We found that after systemic lipopolysaccharide (LPS) challenge, MyD88KO mice showed elevated expression of several cytokine and chemokine genes in the hypothalamus. We therefore assessed the role of an additional inflammatory signaling pathway, TRIF, in acute inflammation (LPS challenge) and in a chronic inflammatory state (cancer cachexia). TRIFKO mice resisted anorexia and weight loss after peripheral (intraperitoneal, IP) or central (intracerebroventricular, ICV) LPS challenge and in a model of pancreatic cancer cachexia. Compared to WT mice, TRIFKO mice showed attenuated upregulation of Il6, Ccl2, Ccl5, Cxcl1, Cxcl2, and Cxcl10 in the hypothalamus after IP LPS treatment, as well as attenuated microglial activation and neutrophil infiltration into the brain after ICV LPS treatment. Lastly, we found that TRIF was required for Ccl2 upregulation in the hypothalamus and induction of the catabolic genes, Mafbx, Murf1, and Foxo1 in gastrocnemius during pancreatic cancer. In summary, our results show that TRIF is an important inflammatory signaling mediator of sickness behavior and cachexia and presents a novel therapeutic target for these conditions.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Caquexia/fisiopatologia , Comportamento de Doença/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Feminino , Hipotálamo/metabolismo , Comportamento de Doença/fisiologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Neuroinflammation ; 14(1): 133, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28668091

RESUMO

BACKGROUND: During acute infections and chronic illnesses, the pro-inflammatory cytokine interleukin-1ß (IL-1ß) acts within the brain to elicit metabolic derangements and sickness behaviors. It is unknown which cells in the brain are the proximal targets for IL-1ß with respect to the generation of these illness responses. We performed a series of in vitro experiments to (1) investigate which brain cell populations exhibit inflammatory responses to IL-1ß and (2) examine the interactions between different IL-1ß-responsive cell types in various co-culture combinations. METHODS: We treated primary cultures of murine brain microvessel endothelial cells (BMEC), astrocytes, and microglia with PBS or IL-1ß, and then performed qPCR to measure inflammatory gene expression or immunocytochemistry to evaluate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. To evaluate whether astrocytes and/or BMEC propagate inflammatory signals to microglia, we exposed microglia to astrocyte-conditioned media and co-cultured endothelial cells and glia in transwells. Treatment groups were compared by Student's t tests or by ANOVA followed by Bonferroni-corrected t tests. RESULTS: IL-1ß increased inflammatory gene expression and NF-κB activation in primary murine-mixed glia, enriched astrocyte, and BMEC cultures. Although IL-1ß elicited minimal changes in inflammatory gene expression and did not induce the nuclear translocation of NF-κB in isolated microglia, these cells were more robustly activated by IL-1ß when co-cultured with astrocytes and/or BMEC. We observed a polarized endothelial response to IL-1ß, because the application of IL-1ß to the abluminal endothelial surface produced a more complex microglial inflammatory response than that which occurred following luminal IL-1ß exposure. CONCLUSIONS: Inflammatory signals are detected, amplified, and propagated through the CNS via a sequential and reverberating signaling cascade involving communication between brain endothelial cells and glia. We propose that the brain's innate immune response differs depending upon which side of the blood-brain barrier the inflammatory stimulus arises, thus allowing the brain to respond differently to central vs. peripheral inflammatory insults.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Interleucina-1beta/farmacologia , Neuroglia/metabolismo , Transdução de Sinais/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Neuroglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
FASEB J ; 27(9): 3572-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23733748

RESUMO

Cachexia is a wasting condition defined by skeletal muscle atrophy in the setting of systemic inflammation. To explore the site at which inflammatory mediators act to produce atrophy in vivo, we utilized mice with a conditional deletion of the inflammatory adaptor protein myeloid differentiation factor 88 (MyD88). Although whole-body MyD88-knockout (wbMyD88KO) mice resist skeletal muscle atrophy in response to LPS, muscle-specific deletion of MyD88 is not protective. Furthermore, selective reexpression of MyD88 in the muscle of wbMyD88KO mice via electroporation fails to restore atrophy gene induction by LPS. To evaluate the role of glucocorticoids as the inflammation-induced mediator of atrophy in vivo, we generated mice with targeted deletion of the glucocorticoid receptor in muscle (mGRKO mice). Muscle-specific deletion of the glucocorticoid receptor affords a 71% protection against LPS-induced atrophy compared to control animals. Furthermore, mGRKO mice exhibit 77% less skeletal muscle atrophy than control animals in response to tumor growth. These data demonstrate that glucocorticoids are a major determinant of inflammation-induced atrophy in vivo and play a critical role in the pathogenesis of endotoxemic and cancer cachexia.


Assuntos
Caquexia/etiologia , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/fisiopatologia , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , Western Blotting , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Mediadores da Inflamação/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Fator 88 de Diferenciação Mieloide/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
J Neurosci ; 31(31): 11376-86, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21813697

RESUMO

In response to illness, animals subvert normal homeostasis and divert their energy utilization to fight infection. An important and unexplored feature of this response is the suppression of physical activity and foraging behavior in the setting of negative energy balance. Inflammatory signaling in the hypothalamus mediates the febrile and anorectic responses to disease, but the mechanism by which locomotor activity (LMA) is suppressed has not been described. Lateral hypothalamic orexin (Ox) neurons link energy status with LMA, and deficiencies in Ox signaling lead to hypoactivity and hypophagia. In the present work, we examine the effect of endotoxin-induced inflammation on Ox neuron biology and LMA in rats. Our results demonstrate a vital role for diminished Ox signaling in mediating inflammation-induced lethargy. This work defines a specific population of inflammation-sensitive, arousal-associated Ox neurons and identifies a proximal neural target for inflammatory signaling to Ox neurons, while eliminating several others.


Assuntos
Inflamação/complicações , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Letargia/tratamento farmacológico , Letargia/etiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Análise de Variância , Animais , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Privação de Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inflamação/induzido quimicamente , Injeções Intraventriculares/métodos , Interleucina-1beta/farmacologia , Interleucina-6/sangue , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/fisiologia , Letargia/patologia , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Inibidor de NF-kappaB alfa , Transplante de Neoplasias/métodos , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Neurotensina/genética , Orexinas , Fotoperíodo , Polissacarídeos/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Receptores da Corticotropina/antagonistas & inibidores , Receptores de Interleucina-11/genética , Receptores de Interleucina-11/metabolismo , Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo
10.
J Biol Chem ; 286(47): 40771-81, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21984834

RESUMO

The melanocortin-3 receptor (MC3R) gene is pleiotropic, influencing body composition, natriuresis, immune function, and entrainment of circadian rhythms to nutrient intake. MC3Rs are expressed in hypothalamic and limbic regions of the brain and in peripheral tissues. To investigate the roles of central MC3Rs, we inserted a "lox-stop-lox" (LoxTB) 5' of the translation initiation codon of the mouse Mc3r gene and reactivated transcription using neuron-specific Cre transgenic mice. As predicted based on earlier observations of Mc3r knock-out mice, Mc3r(TB/TB) mice displayed reduced lean mass, increased fat mass, and accelerated diet-induced obesity. Surprisingly, rescuing Mc3r expression in the nervous system using the Nestin-Cre transgene only partially rescued obesity in chow-fed conditions and had no impact on the accelerated diet-induced obesity phenotype. The ventromedial hypothalamus (VMH), a critical node in the neural networks regulating feeding-related behaviors and metabolic homeostasis, exhibits dense Mc3r expression relative to other brain regions. To target VMH MC3R expression, we used the steroidogenic factor-1 Cre transgenic mouse. Although restoring VMH MC3R signaling also had a modest impact on obesity, marked improvements in metabolic homeostasis were observed. VMH MC3R signaling was not sufficient to rescue the lean mass phenotype or the regulation of behaviors anticipating food anticipation. These results suggest that actions of MC3Rs impacting on energy homeostasis involve both central and peripheral sites of action. The impact of central MC3Rs on behavior and metabolism involves divergent pathways; VMH MC3R signaling improves metabolic homeostasis but does not significantly impact on the expression of behaviors anticipating nutrient availability.


Assuntos
Membrana Celular/metabolismo , Metabolismo Energético/genética , Homeostase/genética , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Alelos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Códon/genética , Feminino , Técnicas de Inativação de Genes , Loci Gênicos/genética , Genótipo , Masculino , Metaboloma/genética , Camundongos , Camundongos Transgênicos , Obesidade/genética , Fenótipo , Receptor Tipo 3 de Melanocortina/deficiência
11.
Am J Physiol Endocrinol Metab ; 303(12): E1446-58, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23047987

RESUMO

Animals exhibit a rapid and sustained anorexia when fed a diet that is deficient in a single indispensable amino acid (IAA). The chemosensor for IAA deficiency resides within the anterior piriform cortex (APC). Although the cellular and molecular mechanisms by which the APC detects IAA deficiency are well established, the efferent neural pathways that reduce feeding in response to an IAA-deficient diet remain to be fully characterized. In the present work, we investigated whether 1) central melanocortin signaling is involved in IAA deficiency-induced anorexia (IAADA) and 2) IAADA engages other key appetite-regulating neuronal populations in the hypothalamus. Rats and mice that consumed a valine-deficient diet (VDD) for 2-3 wk exhibited marked reductions in food intake, body weight, fat and lean body mass, body temperature, and white adipose tissue leptin gene expression, as well as a paradoxical increase in brown adipose tissue uncoupling protein-1 mRNA. Animals consuming the VDD had altered hypothalamic gene expression, typical of starvation. Pharmacological and genetic blockade of central melanocortin signaling failed to increase long-term food intake in this model. Chronic IAA deficiency was associated with a marked upregulation of corticotropin-releasing hormone expression in the lateral hypothalamus, particularly in the parasubthalamic nucleus, an area heavily innervated by efferent projections from the APC. Our observations indicate that the hypothalamic melanocortin system plays a minor role in acute, but not chronic, IAADA and suggest that the restraint on feeding is analogous to that observed after chronic dehydration.


Assuntos
Anorexia/etiologia , Anorexia/metabolismo , Hipotálamo/metabolismo , Vias Neurais/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Valina/deficiência , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Anorexia/patologia , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Regulação da Expressão Gênica , Hipotálamo/patologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Leptina/genética , Leptina/metabolismo , Masculino , Melanocortinas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Vias Neurais/patologia , Neurônios/patologia , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Proteína Desacopladora 1 , Valina/metabolismo
12.
Mol Metab ; 58: 101441, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031523

RESUMO

OBJECTIVE: Cancer cachexia is a devastating chronic condition characterized by involuntary weight loss, muscle wasting, abnormal fat metabolism, anorexia, and fatigue. However, the molecular mechanisms underlying this syndrome remain poorly understood. In particular, the hypothalamus may play a central role in cachexia, given that it has direct access to peripheral signals because of its anatomical location and attenuated blood-brain barrier. Furthermore, this region has a critical role in regulating appetite and metabolism. METHODS: To provide a detailed analysis of the hypothalamic response to cachexia, we performed single-cell RNA-seq combined with RNA-seq of the medial basal hypothalamus (MBH) in a mouse model for pancreatic cancer. RESULTS: We found many cell type-specific changes, such as inflamed endothelial cells, stressed oligodendrocyes and both inflammatory and moderating microglia. Lcn2, a newly discovered hunger suppressing hormone, was the highest induced gene. Interestingly, cerebral treatment with LCN2 not only induced many of the observed molecular changes in cachexia but also affected gene expression in food-intake decreasing POMC neurons. In addition, we found that many of the cachexia-induced molecular changes found in the hypothalamus mimic those at the primary tumor site. CONCLUSION: Our data reveal that multiple cell types in the MBH are affected by tumor-derived factors or host factors that are induced by tumor growth, leading to a marked change in the microenvironment of neurons critical for behavioral, metabolic, and neuroendocrine outputs dysregulated during cachexia. The mechanistic insights provided in this study explain many of the clinical features of cachexia and will be useful for future therapeutic development.


Assuntos
Caquexia , Neoplasias Pancreáticas , Animais , Caquexia/metabolismo , Células Endoteliais/metabolismo , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Camundongos , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Análise de Sequência de RNA , Microambiente Tumoral , Neoplasias Pancreáticas
13.
J Cachexia Sarcopenia Muscle ; 12(5): 1312-1332, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231343

RESUMO

BACKGROUND: Cancer cachexia is a metabolic disorder characterized by the progressive loss of fat and lean mass that results in significant wasting, ultimately leading to reduced quality of life and increased mortality. Effective therapies for cachexia are lacking, potentially owing to the mismatch in clinically relevant models of cachexia. Specifically, cachexia observed in a clinical setting is commonly associated with advanced or late-stage cancers that are metastatic, yet pre-clinical metastatic models of cachexia are limited. Furthermore, the prevalence of cachexia in head and neck cancer patients is high, yet few pre-clinical models of head and neck cancer cachexia exist. In addition to these shortcomings, cachexia is also heterogeneous among any given cancer, whereas patients with similar disease burden may experience significantly different degrees of cachexia symptoms. In order to address these issues, we characterize a metastatic model of human papilloma virus (HPV) positive head and neck squamous cell carcinoma that recapitulates the cardinal clinical and molecular features of cancer cachexia. METHODS: Male and female C57BL/6 mice were implanted subcutaneously with oropharyngeal squamous cell carcinoma cells stably transformed with HPV16 E6 and E7 together with hRas and luciferase (mEERL) that metastasizes to the lungs (MLM). We then robustly characterize the physiologic, behavioural, and molecular signatures during tumour development in two MLM subclones. RESULTS: Mice injected with MLM tumour cells rapidly developed primary tumours and eventual metastatic lesions to the lungs. MLM3, but not MLM5, engrafted mice progressively lost fat and lean mass during tumour development despite the absence of anorexia (P < 0.05). Behaviourally, MLM3-implanted mice displayed decreased locomotor behaviours and impaired nest building (P < 0.05). Muscle catabolism programmes associated with cachexia, including E3 ubiquitin ligase and autophagy up-regulation, along with progressive adipose wasting and accompanying browning gene signatures, were observed. Tumour progression also corresponded with hypothalamic and peripheral organ inflammation, as well as an elevation in neutrophil-to-lymphocyte ratio (P < 0.05). Finally, we characterize the fat and lean mass sparing effects of voluntary wheel running on MLM3 cachexia (P < 0.05). CONCLUSIONS: This syngeneic MLM3 allograft model of metastatic cancer cachexia is reliable, consistent, and readily recapitulates key clinical and molecular features and heterogeneity of cancer cachexia. Because few metastatic models of cachexia exist-even though cachexia often accompanies metastatic progression-we believe this model more accurately captures cancer cachexia observed in a clinical setting and thus is well suited for future mechanistic studies and pre-clinical therapy development for this crippling metabolic disorder.


Assuntos
Caquexia , Neoplasias de Cabeça e Pescoço , Animais , Caquexia/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Qualidade de Vida
14.
Nat Commun ; 12(1): 2057, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824339

RESUMO

Lipocalin 2 (LCN2) was recently identified as an endogenous ligand of the type 4 melanocortin receptor (MC4R), a critical regulator of appetite. However, it remains unknown if this molecule influences appetite during cancer cachexia, a devastating clinical entity characterized by decreased nutrition and progressive wasting. We demonstrate that LCN2 is robustly upregulated in murine models of pancreatic cancer, its expression is associated with reduced food consumption, and Lcn2 deletion is protective from cachexia-anorexia. Consistent with LCN2's proposed MC4R-dependent role in cancer-induced anorexia, pharmacologic MC4R antagonism mitigates cachexia-anorexia, while restoration of Lcn2 expression in the bone marrow is sufficient in restoring the anorexia feature of cachexia. Finally, we observe that LCN2 levels correlate with fat and lean mass wasting and is associated with increased mortality in patients with pancreatic cancer. Taken together, these findings implicate LCN2 as a pathologic mediator of appetite suppression during pancreatic cancer cachexia.


Assuntos
Apetite , Caquexia/complicações , Lipocalina-2/metabolismo , Neoplasias Pancreáticas/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anorexia/sangue , Anorexia/complicações , Barreira Hematoencefálica/patologia , Medula Óssea/patologia , Caquexia/sangue , Linhagem Celular Tumoral , Modelos Animais de Doenças , Comportamento Alimentar , Feminino , Deleção de Genes , Humanos , Lipocalina-2/sangue , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Músculos/patologia , Neutrófilos/patologia , Tamanho do Órgão , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Regulação para Cima
15.
Elife ; 92020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32391790

RESUMO

Weight loss and anorexia are common symptoms in cancer patients that occur prior to initiation of cancer therapy. Inflammation in the brain is a driver of these symptoms, yet cellular sources of neuroinflammation during malignancy are unknown. In a mouse model of pancreatic ductal adenocarcinoma (PDAC), we observed early and robust myeloid cell infiltration into the brain. Infiltrating immune cells were predominately neutrophils, which accumulated at a unique central nervous system entry portal called the velum interpositum, where they expressed CCR2. Pharmacologic CCR2 blockade and genetic deletion of Ccr2 both resulted in significantly decreased brain-infiltrating myeloid cells as well as attenuated cachexia during PDAC. Lastly, intracerebroventricular blockade of the purinergic receptor P2RX7 during PDAC abolished immune cell recruitment to the brain and attenuated anorexia. Our data demonstrate a novel function for the CCR2/CCL2 axis in recruiting neutrophils to the brain, which drives anorexia and muscle catabolism.


Weight loss, decreased appetite and fatigue are symptoms of a wasting disorder known as cachexia, which is common in several serious diseases such as AIDS, chronic lung disease and heart failure. Up to 80 percent of people with advanced cancer also develop cachexia, and there are no effective treatments. It is not known how cachexia develops, but symptoms like appetite loss and fatigue are controlled by the brain. One theory is that the brain may be responding to a malfunctioning immune response that causes inflammation. While the brain was thought to be protected from this, new research has shown that it is possible for cells from the immune system to reach the brain in some conditions. To find out if this also happens in cancer, Burfeind et al. studied mice that had been implanted with pancreatic cancer cells and were showing signs of cachexia. Samples from the mice's brains showed that immune cells known as neutrophils were present and active. A protein known as CCR2 was found in higher levels in the brains of these mice. This protein is involved in the movement of neutrophil cells through the body. To see what effect this protein had, Burfeind et al. gave the mice a drug that blocks CCR2. This prevented the neutrophils from entering the brain and reduced the symptoms of cachexia in the mice. To further confirm the role of CCR2, the mice were genetically modified so that they could not produce the protein. This reduced the number of neutrophils seen in the brain but not in the rest of the body. This suggests that a drug targeting CCR2 could help to reduce the symptoms of cachexia, without disrupting the normal immune response away from the brain. This approach would still need to be tested in clinical trials before it is possible to know how effective it might be in humans.


Assuntos
Encéfalo/fisiopatologia , Caquexia/etiologia , Carcinoma Ductal Pancreático/patologia , Células Mieloides/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Anorexia/etiologia , Carcinoma Ductal Pancreático/complicações , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/imunologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neoplasias Pancreáticas/complicações , Receptores CCR2/genética , Receptores CCR2/metabolismo , Redução de Peso
16.
Peptides ; 30(2): 210-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19028534

RESUMO

Inflammation-associated cachexia is associated with multiple chronic diseases and involves activation of appetite regulating centers in the arcuate nucleus of the hypothalamus (ARH). The nucleus of the solitary tract (NTS) in the brainstem has also been implicated as an important nucleus involved in appetite regulation. We set out to determine whether the NTS may be involved in inflammation-associated anorexia by injecting IL-1 beta into the 4th ventricle and assessing food intake and NTS neuronal activation. Injection of IL-1 beta produced a decrease in food intake at 3 and 12h after injection which was ameliorated at the 12h time point by a sub-threshold dose of agouti-related peptide (AgRP). Investigation into neuron types in the NTS revealed that IL-1 beta injection was associated with an increase in c-Fos activity in NTS neurons expressing tyrosine hydroxylase (TH). Additionally, injection of IL-1 beta into the 4th ventricle did not produce c-Fos activation of neurons expressing pro-opiomelanocortin (POMC) in the ARH, cells known to be involved in producing anorexia in response to systemic inflammation. Double-label in situ hybridization revealed that TH neurons did not express IL-1 receptor I (IL1-RI) transcript, demonstrating that c-Fos activation of TH neurons in this setting was not via direct stimulation of IL-1 beta on TH neurons themselves. We conclude that IL-1 beta injection into the 4th ventricle produces anorexia and is accompanied by an increase in activation in TH neurons in the NTS. This provides evidence that the brainstem may be an important mediator of anorexia in the setting of inflammation.


Assuntos
Proteína Relacionada com Agouti/farmacologia , Anorexia/induzido quimicamente , Interleucina-1beta/administração & dosagem , Neurônios/enzimologia , Núcleo Solitário/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Anorexia/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Tronco Encefálico/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Injeções Intraventriculares , Interleucina-1beta/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia
18.
Nat Commun ; 10(1): 4682, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615993

RESUMO

A priority in cancer research is to innovate therapies that are not only effective against tumor progression but also address comorbidities such as cachexia that limit quality and quantity of life. We demonstrate that TLR7/8 agonist R848 induces anti-tumor responses and attenuates cachexia in murine models of pancreatic ductal adenocarcinoma (PDAC). In vivo, tumors from two of three cell lines were R848-sensitive, resulting in smaller tumor mass, increased immune complexity, increased CD8+ T-cell infiltration and activity, and decreased Treg frequency. R848-treated mice demonstrated improvements in behavioral and molecular cachexia manifestations, resulting in a near-doubling of survival duration. Knockout mouse studies revealed that stromal, not neoplastic, TLR7 is requisite for R848-mediated responses. In patient samples, we found Tlr7 is ubiquitously expressed in stroma across all stages of pancreatic neoplasia, but epithelial Tlr7 expression is relatively uncommon. These studies indicate immune-enhancing approaches including R848 may be useful in PDAC and cancer-associated cachexia.


Assuntos
Caquexia , Carcinoma Ductal Pancreático/metabolismo , Imidazóis/farmacologia , Neoplasias Intraductais Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Ingestão de Alimentos/efeitos dos fármacos , Expressão Gênica , Humanos , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Análise de Sequência de RNA , Taxa de Sobrevida , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/agonistas , Carga Tumoral , Microambiente Tumoral/imunologia
19.
Endocrinology ; 149(10): 4837-45, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18583425

RESUMO

Agouti-related protein (AgRP) is an orexigenic neuropeptide produced by neurons in the hypothalamic arcuate nucleus (ARC) that is a key component of central neural circuits that control food intake and energy expenditure. Disorders in energy homeostasis, characterized by hypophagia and increased metabolic rate, frequently develop in animals with either acute or chronic diseases. Recently, studies have demonstrated that proopiomelanocortin-expressing neurons in the ARC are activated by the proinflammatory cytokine IL-1beta. In the current study, we sought to determine whether inflammatory processes regulate the expression of AgRP mRNA and to characterize the response of AgRP neurons to IL-1beta. Here, we show by real-time RT-PCR and in situ hybridization analysis that AgRP mRNA expression in rodents is increased in models of acute and chronic inflammation. AgRP neurons were found to express the type I IL-1 receptor, and the percentage of expression was significantly increased after peripheral administration of lipopolysaccharide. Furthermore, we demonstrate that IL-1beta inhibits the release of AgRP from hypothalamic explants. Collectively, these data indicate that proinflammatory signals decrease the secretion of AgRP while increasing the transcription of the AgRP gene. These observations suggest that AgRP neurons may participate with ARC proopiomelanocortin neurons in mediating the anorexic and metabolic responses to acute and chronic disease processes.


Assuntos
Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Inflamação/fisiopatologia , Transcrição Gênica/imunologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Núcleo Arqueado do Hipotálamo/citologia , Transplante de Tecido Encefálico , Doença Crônica , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-1beta/metabolismo , Cetorolaco/farmacologia , Falência Renal Crônica/imunologia , Falência Renal Crônica/fisiopatologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/fisiopatologia , Neurônios/fisiologia , Prostaglandinas/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Receptores de Interleucina-1/genética
20.
Endocrinology ; 149(2): 827-35, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18039782

RESUMO

Chronic kidney disease (CKD) is associated with an increase in inflammatory cytokines and can result in cachexia with loss of muscle and fat stores. We previously demonstrated the efficacy of treating a model of cancer cachexia with ghrelin and a ghrelin receptor agonist. Currently, we examine a surgical model of CKD in rats, resulting in uremia and decreased accrual of lean body mass. Treatment with ghrelin and two ghrelin receptor agonists (BIM-28125 and BIM-28131) resulted in increased food intake and an improvement in lean body mass accrual that was related in part to a decrease in muscle protein degradation as assessed by muscle levels of the 14-kDa actin fragment resulting from cleaved actomyosin. Additionally, there was a decrease in circulating inflammatory cytokines in nephrectomized animals treated with ghrelin relative to saline treatment. Ghrelin-treated animals also had a decrease in the expression of IL-1 receptor in the brainstem and a decrease in expression of prohormone convertase-2, an enzyme involved in the processing of proopiomelanocortin to the anorexigenic peptide alpha-MSH. We conclude that ghrelin treatment in uremia results in improved lean mass accrual in part due to suppressed muscle proteolysis and possibly related to antiinflammatory effects.


Assuntos
Peso Corporal/efeitos dos fármacos , Caquexia/tratamento farmacológico , Citocinas/sangue , Grelina/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Absorciometria de Fóton , Animais , Caquexia/etiologia , Caquexia/imunologia , Citocinas/genética , Dactinomicina/metabolismo , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/sangue , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/etiologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Nefrectomia , Neuropeptídeos/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de Grelina/agonistas , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA