Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurol ; 24(1): 197, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862912

RESUMO

INTRODUCTION: Individuals with spinal cord injury (SCI) can experience accelerated cognitive aging. Myokines (factors released from muscle cells during contractions), such as brain-derived neurotrophic factor (BDNF), are thought to have beneficial effects on cognition. Neuromuscular electrical stimulation (NMES) was shown to elicit a large release of myokines. However, the effects of NMES on cognitive function have not been studied. OBJECTIVE: To present the study protocol for a clinical trial evaluating the effects of NMES aimed at improving cognition and BDNF. METHODS: A replicated randomized three-phases single-case experimental design (SCED) with sequential multiple baseline time series and a single-armed prospective trial will be conducted with 15 adults with chronic SCI (> 12 months after injury) above L1 neurological level undergoing 30-min quadriceps NMES, 3 days per week for 12 weeks. MAIN STUDY ENDPOINTS: Primary endpoint is cognitive performance (assessed by a smartphone test) conducted three times per week during the baseline phase with random duration of 3 to 8 weeks, the intervention phase of 12 weeks, and the follow-up phase of 3 weeks after a no measurement rest period of 12 weeks. Secondary endpoints are changes in BDNF levels and cognitive performance measured before the baseline period, before and after intervention and after a 12 weeks follow-up. CONCLUSION: This will be the first study investigating the effects of 12 weeks NMES on both cognition and BDNF levels in individuals with SCI. The SCED results provide information on individual treatment effect courses which may direct future research. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05822297, 12/01/2023).


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Terapia por Estimulação Elétrica , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/psicologia , Traumatismos da Medula Espinal/reabilitação , Terapia por Estimulação Elétrica/métodos , Adulto , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Feminino , Estudos de Caso Único como Assunto , Cognição/fisiologia , Pessoa de Meia-Idade , Projetos de Pesquisa
2.
Neuroimage ; 266: 119830, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566925

RESUMO

Aging is associated with alterations in the brain including structural and metabolic changes. Previous research has focused on neurometabolite level differences associated to age in a variety of brain regions, but the relationship among metabolites across the brain has been much less studied. Investigating these relationships can reveal underlying neurometabolic processes, their interdependency, and their progress throughout the lifespan. Using 1H-MRS, we investigated the relationship among metabolite concentrations of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-Inositol (mIns) and glutamate-glutamine complex (Glx) in seven voxel locations, i.e., bilateral sensorimotor cortex, bilateral striatum, pre-supplementary motor area, right inferior frontal gyrus and occipital cortex. These measurements were performed on 59 human participants divided in two age groups: young adults (YA: 23.2 ± 4.3; 18-34 years) and older adults (OA: 67.5 ± 3.9; 61-74 years). Our results showed age-related differences in NAA, Cho, and mIns across brain regions, suggesting the presence of neurodegeneration and altered gliosis. Moreover, associative patterns among NAA, Cho and Cr were observed across the selected brain regions, which differed between young and older adults. Whereas most of metabolite concentrations were inhomogeneous across different brain regions, Cho levels were shown to be strongly related across brain regions in both age groups. Finally, we found metabolic associations between homologous brain regions (SM1 and striatum) in the OA group, with NAA showing a significant correlation between bilateral sensorimotor cortices (SM1) and mIns levels being correlated between the bilateral striata. We posit that a network perspective provides important insights regarding the potential interactions among neurochemicals underlying metabolic processes at a local and global level and their relationship with aging.


Assuntos
Córtex Motor , Córtex Sensório-Motor , Adulto Jovem , Humanos , Idoso , Espectroscopia de Prótons por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Envelhecimento , Córtex Motor/metabolismo , Córtex Sensório-Motor/metabolismo , Córtex Pré-Frontal/metabolismo , Ácido Aspártico , Creatina/metabolismo , Colina/metabolismo , Inositol/metabolismo
3.
Front Neuroendocrinol ; 66: 100993, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35283168

RESUMO

Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.


Assuntos
Potenciação de Longa Duração , Plasticidade Neuronal , Cognição , Exercício Físico/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia
4.
Exp Brain Res ; 240(4): 1029-1044, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35171307

RESUMO

Reaching for an object in space forms the basis for many activities of daily living and is important in rehabilitation after stroke and in other neurological and orthopedic conditions. It has been the object of motor control and neuroscience research for over a century, but studies often constrain movement to eliminate the effect of gravity or reduce the degrees of freedom. In some studies, aging has been shown to reduce target accuracy, with a mechanism suggested to be impaired corrective movements. We sought to explore how such changes in accuracy relate to changes in finger, shoulder and elbow movements during performance of reaching movements with the normal effects of gravity, unconstrained hand movement, and stable target locations. Three-dimensional kinematic data and electromyography were collected in 14 young (25 ± 6 years) and 10 older adults (68 ± 3 years) during second-long reaches to 3 targets aligned vertically in front of the participants. Older adults took longer to initiate a movement than the young adults and were more variable and inaccurate in their initial and final movements. Target height had greater effect on trajectory curvature variability in older than young adults, with angle variability relative to target position being greater in older adults around the time of peak speed. There were significant age-related differences in use of the multiple degrees of freedom of the upper extremity, with less variability in shoulder abduction in the older group. Muscle activation patterns were similar, except for a higher biceps-triceps co-contraction and tonic levels of some proximal muscle activation. These results show an age-related deficit in the motor planning and online correction of reaching movements against a predictable force (i.e., gravity) when it is not compensated by mechanical support.


Assuntos
Atividades Cotidianas , Movimento , Idoso , Envelhecimento , Braço , Fenômenos Biomecânicos , Eletromiografia/métodos , Humanos , Movimento/fisiologia , Projetos Piloto , Adulto Jovem
5.
Neuroimage ; 243: 118500, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428570

RESUMO

It has been argued that age-related changes in the neurochemical and neurophysiological properties of the GABAergic system may underlie increases in reaction time (RT) in older adults. However, the role of GABA levels within the sensorimotor cortices (SMC) in mediating interhemispheric interactions (IHi) during the processing stage of a fast motor response, as well as how both properties explain interindividual differences in RT, are not yet fully understood. In this study, edited magnetic resonance spectroscopy (MRS) was combined with dual-site transcranial magnetic stimulation (dsTMS) for probing GABA+ levels in bilateral SMC and task-related neurophysiological modulations in corticospinal excitability (CSE), and primary motor cortex (M1)-M1 and dorsal premotor cortex (PMd)-M1 IHi, respectively. Both CSE and IHi were assessed during the preparatory and premotor period of a delayed choice RT task. Data were collected from 25 young (aged 18-33 years) and 28 older (aged 60-74 years) healthy adults. Our results demonstrated that older as compared to younger adults exhibited a reduced bilateral CSE suppression, as well as a reduced magnitude of long latency M1-M1 and PMd-M1 disinhibition during the preparatory period, irrespective of the direction of the IHi. Importantly, in older adults, the GABA+ levels in bilateral SMC partially accounted for task-related neurophysiological modulations as well as individual differences in RT. In contrast, in young adults, neither task-related neurophysiological modulations, nor individual differences in RT were associated with SMC GABA+ levels. In conclusion, this study contributes to a comprehensive initial understanding of how age-related differences in neurochemical properties and neurophysiological processes are related to increases in RT.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Córtex Motor/fisiologia , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana/métodos , Ácido gama-Aminobutírico/metabolismo , Adolescente , Adulto , Idoso , Potencial Evocado Motor , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Inibição Neural/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto Jovem
6.
Exp Brain Res ; 239(12): 3585-3600, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34591126

RESUMO

Contributions from premotor and supplementary motor areas to reaching behavior in aging humans are not well understood. The objective of these experiments was to examine effects of perturbations to specific cortical areas on the control of unconstrained reaches against gravity by younger and older adults. Double-pulse transcranial magnetic stimulation (TMS) was applied to scalp locations targeting primary motor cortex (M1), dorsal premotor area (PMA), supplementary motor area (SMA), or dorsolateral prefrontal cortex (DLPFC). Stimulation was intended to perturb ongoing activity in the targeted cortical region before or after a visual cue to initiate moderately paced reaches to one of three vertical target locations. Regional effects were observed in movement amplitude both early and late in the reach. Perturbation of PMA increased reach distance before the time of peak velocity to a greater extent than all other regions. Reaches showed greater deviation from a straight-line path around the time of peak velocity and greater overall curvature with perturbation of PMA and M1 relative to SMA and DLPFC. The perturbation increased positional variability of the reach path at the time of peak velocity and the time elapsing after peak velocity. Although perturbations had stronger effects on reaches by younger subjects, this group exhibited less reach path variability at the time of peak velocity and required less time to adjust the movement trajectory thereafter. These findings support the role of PMA in visually guided reaching and suggest an age-related change in sensorimotor processing, possibly due to a loss of cortical inhibitory control.


Assuntos
Córtex Motor , Desempenho Psicomotor , Idoso , Humanos , Movimento , Projetos Piloto , Estimulação Magnética Transcraniana
7.
Neuroimage ; 202: 116050, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31349070

RESUMO

Aging is associated with gradual alterations in the neurochemical characteristics of the brain, which can be assessed in-vivo with proton-magnetic resonance spectroscopy (1H-MRS). However, the impact of these age-related neurochemical changes on functional motor behavior is still poorly understood. Here, we address this knowledge gap and specifically focus on the neurochemical integrity of the left sensorimotor cortex (SM1) and the occipital lobe (OCC), as both regions are main nodes of the visuomotor network underlying bimanual control. 1H-MRS data and performance on a set of bimanual tasks were collected from a lifespan (20-75 years) sample of 86 healthy adults. Results indicated that aging was accompanied by decreased levels of N-acetylaspartate (NAA), glutamate-glutamine (Glx), creatine â€‹+ â€‹phosphocreatine (Cr) and myo-inositol (mI) in both regions, and decreased Choline (Cho) in the OCC region. Lower NAA and Glx levels in the SM1 and lower NAA levels in the OCC were related to poorer performance on a visuomotor bimanual coordination task, suggesting that NAA could serve as a potential biomarker for the integrity of the motor system supporting bimanual control. In addition, lower NAA, Glx, and mI levels in the SM1 were found to be correlates of poorer dexterous performance on a bimanual dexterity task. These findings highlight the role for 1H-MRS to study neurochemical correlates of motor performance across the adult lifespan.


Assuntos
Envelhecimento/metabolismo , Atividade Motora/fisiologia , Córtex Sensório-Motor/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Espectroscopia de Prótons por Ressonância Magnética , Adulto Jovem
8.
Hum Brain Mapp ; 39(9): 3652-3662, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29722142

RESUMO

Levels of GABA, the main inhibitory neurotransmitter in the brain, can be regionally quantified using magnetic resonance spectroscopy (MRS). Although GABA is crucial for efficient neuronal functioning, little is known about age-related differences in GABA levels and their relationship with age-related changes in brain structure. Here, we investigated the effect of age on GABA levels within the left sensorimotor cortex and the occipital cortex in a sample of 85 young and 85 older adults using the MEGA-PRESS sequence. Because the distribution of GABA varies across different brain tissues, various correction methods are available to account for this variation. Considering that these correction methods are highly dependent on the tissue composition of the voxel of interest, we examined differences in voxel composition between age groups and the impact of these various correction methods on the identification of age-related differences in GABA levels. Results indicated that, within both voxels of interest, older (as compared to young adults) exhibited smaller gray matter fraction accompanied by larger fraction of cerebrospinal fluid. Whereas uncorrected GABA levels were significantly lower in older as compared to young adults, this age effect was absent when GABA levels were corrected for voxel composition. These results suggest that age-related differences in GABA levels are at least partly driven by the age-related gray matter loss. However, as alterations in GABA levels might be region-specific, further research should clarify to what extent gray matter changes may account for age-related differences in GABA levels within other brain regions.


Assuntos
Envelhecimento/metabolismo , Química Encefálica , Ácido gama-Aminobutírico/análise , Adolescente , Adulto , Idoso , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/diagnóstico por imagem , Feminino , Substância Cinzenta/química , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Substância Branca/química , Substância Branca/diagnóstico por imagem , Adulto Jovem , Ácido gama-Aminobutírico/líquido cefalorraquidiano
9.
Exp Brain Res ; 236(3): 847-857, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29353311

RESUMO

In the present study, we investigated whether visual information mediates a proprioceptive illusion effect induced by muscle tendon vibration in manual aiming. Visual information was gradually degraded from a situation in which the targets were present and participants (n = 20; 22.3 ± 2.7 years) were permitted to make saccadic eye movements to designated target positions, to a condition in which the targets were not visible and participants were required to perform cyclical aiming while fixating a point between the two target positions. Local tendon vibration applied to the right wrist extensor muscles induced an illusory reduction of 15% in hand movement amplitude. This effect was greater in the fixation than in the saccade condition. Both anticipatory control and proprioceptive feedback are proposed to contribute to the observed effects. The primary saccade amplitude was also reduced by almost 4% when muscle tendon vibration was locally applied to the wrist. These results confirm a tight link between eye movements and manual perception and action. Moreover, the impact of the proprioceptive illusion on the ocular system indicates that the interaction between systems is bidirectional.


Assuntos
Ilusões/fisiologia , Atividade Motora/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Punho/fisiologia , Adulto , Feminino , Humanos , Masculino , Tendões/fisiologia , Vibração , Adulto Jovem
10.
J Neurosci ; 36(6): 1808-22, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865607

RESUMO

Changes in both brain structure and neurophysiological function regulating homotopic as well as heterotopic interhemispheric interactions (IHIs) are assumed to be responsible for the bimanual performance deficits in older adults. However, how the structural and functional networks regulating bimanual performance decline in older adults, as well as the interplay between brain structure and function remain largely unclear. Using a dual-site transcranial magnetic stimulation paradigm, we examined the age-related changes in the interhemispheric effects from the dorsolateral prefrontal cortex and dorsal premotor cortex onto the contralateral primary motor cortex (M1) during the preparation of a complex bimanual coordination task in human. Structural properties of these interactions were assessed with diffusion-based fiber tractography. Compared with young adults, older adults showed performance declines in the more difficult bimanual conditions, less optimal brain white matter (WM) microstructure, and a decreased ability to regulate the interaction between dorsolateral prefrontal cortex and M1. Importantly, we found that WM microstructure, neurophysiological function, and bimanual performance were interrelated in older adults, whereas only the task-related changes in IHI predicted bimanual performance in young adults. These results reflect unique interactions between structure and function in the aging brain, such that declines in WM microstructural organization likely lead to dysfunctional regulation of IHI, ultimately accounting for bimanual performance deficits. SIGNIFICANCE STATEMENT: The structural and functional changes in the aging brain are associated with a decline in movement control, compromising functional independence. We used MRI and noninvasive brain stimulation techniques to investigate white matter microstructural organization and neurophysiological function in the aging brain, in relation to bimanual movement control. We found that less optimal brain microstructural organization and task-related modulations in neurophysiological function resulted in poor bimanual performance in older adults. By interrelating brain structure, neurophysiological function, and behavior, the current study provides a comprehensive picture of biological alterations in the aging brain that underlie declines in bimanual performance.


Assuntos
Envelhecimento/fisiologia , Lobo Frontal/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Idoso , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Magnética Transcraniana , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Adulto Jovem
11.
Hum Brain Mapp ; 37(12): 4629-4639, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27585251

RESUMO

There is a convergence in the literature toward a critical role for the basal ganglia in action selection. However, which substructures within the basal ganglia fulfill this role is still unclear. Here we used shape analyses of structural magnetic resonance imaging data to determine the extent to which basal ganglia structures predict performance in easy and complex multilimb reaction-time tasks in young and old adults. Results revealed that inward deformation (i.e., local atrophy) of the nucleus accumbens and caudate were predictive of longer action selection times in complex conditions, but not in easy conditions. Additionally, when assessing the relation between behavioral performance and the shape of the left nucleus accumbens in the two age groups separately, we found a significant performance-structure association in old, but not young adults. This result suggests that the relevance of the nucleus accumbens for the process of action selection increases with age. Hum Brain Mapp 37:4629-4639, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Envelhecimento/patologia , Núcleo Caudado/diagnóstico por imagem , Comportamento de Escolha , Atividade Motora , Núcleo Accumbens/diagnóstico por imagem , Tempo de Reação , Idoso , Envelhecimento/fisiologia , Envelhecimento/psicologia , Atrofia , Comportamento de Escolha/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Atividade Motora/fisiologia , Tamanho do Órgão , Tempo de Reação/fisiologia , Adulto Jovem
12.
Brain Cogn ; 109: 59-65, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27643952

RESUMO

Acute exercise appears to facilitate certain aspects of cognitive processing. The possibility that exercise may lead to more efficient inhibitory processes is of particular interest, owing to the wide range of cognitive and motor functions that inhibition may underlie. The purpose of the present study was to examine the immediate and the delayed effect of acute aerobic exercise on response inhibition, motor planning, and eye-hand coordination in healthy active adults. Forty healthy and active participants (10 females) with a mean age of 51.88±8.46years performed the Go-NoGo test (response inhibition) and the Catch Game (motor planning and eye-hand coordination) before, immediately after, and following a 30-min recovery period in two conditions: a moderate-intensity aerobic session and a control session. In 2-way repeated measures ANOVAs (2 treatments×3 times) followed by contrast comparisons for post hoc analyses, significant pre-post interactions - indicating improvements immediately following exercise but not following the control condition - were observed in the Go-NoGo measures: Accuracy, Reaction Time, and Performance Index, but not in the Catch Game. In the post-follow-up interaction a deterioration was observed in Performance Index, and a trend of deterioration in Accuracy and Reaction Time. The conclusion was that a single session of moderate-intensity aerobic exercise facilitates response inhibition, but not motor planning or eye-hand coordination, in middle-aged healthy active adults. On the other hand, the improvement does not last 30min following a recovery period. Further studies are needed to examine the duration of the inhibitory control benefits and the accumulative effect of a series of acute exercise bouts, as well as to determine the brain networks and/or neurotransmitter systems most affected by the intervention.


Assuntos
Função Executiva/fisiologia , Exercício Físico/fisiologia , Inibição Psicológica , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Exp Brain Res ; 233(6): 1733-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25788008

RESUMO

Age has a clear impact on one's ability to make accurate goal-directed aiming movements. Older adults seem to plan slower and shorter-ranged initial pulses towards the target, and rely more on sensory feedback to ensure endpoint accuracy. Despite the fact that these age-related changes in manual aiming have been observed consistently, the underlying mechanism remains speculative. In an attempt to isolate four commonly suggested underlying factors, young and older adults were instructed to make discrete aiming movements under varying speed and accuracy constraints. Results showed that older adults were physically able to produce fast primary submovements and that they demonstrated similar movement-programming capacities as young adults. On the other hand, considerable evidence was found supporting a decreased visual feedback-processing efficiency and the implementation of a play-it-safe strategy in older age. In conclusion, a combination of the latter two factors seems to underlie the age-related changes in manual aiming behaviour.


Assuntos
Envelhecimento/fisiologia , Retroalimentação Sensorial/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
J Aging Phys Act ; 23(2): 169-79, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24662039

RESUMO

Older adults traditionally adapt their discrete aiming movements, thereby traveling a larger proportion of the movement under closed-loop control. As the beneficial impact of a physically active lifestyle in older age has been described for several aspects of motor control, we compared the aiming performance of young controls to active and sedentary older adults. To additionally determine the contribution of visual feedback, aiming movements were executed with and without saccades. Results showed only sedentary older adults adopted the typical movement changes, highlighting the impact of a physically active lifestyle on manual aiming in older age. In an attempt to reveal the mechanism underlying the movement changes, evidence for an age-related decline in force control was found, which in turn resulted in an adapted aiming strategy. Finally, prohibiting saccades did not affect older adults' performance to a greater extent, suggesting they do not rely more on visual feedback than young controls.


Assuntos
Adaptação Fisiológica , Retroalimentação Sensorial/fisiologia , Avaliação Geriátrica/métodos , Estilo de Vida , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Fatores Etários , Idoso , Envelhecimento/fisiologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Tempo de Reação , Comportamento Sedentário , Adulto Jovem
15.
Psychol Sport Exerc ; 72: 102602, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38280537

RESUMO

Differences in expectations between experimental and control groups can influence the outcomes of exercise interventions, emphasizing the need to match expectations across study groups. This online study examined whether the expectations to improve the performance of different cognitive tasks differ between various activities commonly used in research on the effects of exercise and cognitive function. Two hundred and five middle-aged adults performed two reaction-time tasks and one memory task. They were then asked to rate, on a 1-5 Likert scale, their expectations to improve performance in those tasks should they engage in six types of activities for three months: brisk walking, resistance exercise, stretching and balance exercises, watching videos with lectures on art, history, and science, a program of relaxation techniques, and yoga/tai chi/meditation. Results revealed that the highest expectations for improvement were associated with relaxation techniques and yoga/tai chi/meditation. Some activities, such as brisk walking and stretch and balance exercises, shared similar expectations. Previous knowledge of the possible beneficial effects of exercise on cognitive performance also led to higher expectations. To establish causal relationships, researchers should strive to use activities that share similar expectations to improve performance for the experimental and control groups. The findings of this study provide such activity pairs. Finally, researchers should also try to match participants with and without prior knowledge of the benefits of exercise to cognitive function between experimental and control groups.


Assuntos
Exercício Físico , Yoga , Adulto , Pessoa de Meia-Idade , Humanos , Grupos Controle , Caminhada , Cognição
16.
Geroscience ; 46(4): 3971-3991, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38478179

RESUMO

Physical exercise is suggested to promote hippocampal neuroplasticity by increasing circulating neurotrophic and anti-inflammatory factors. Our aim was to explore the interplay between the effect of progressive resistance exercise on blood biomarker levels, hippocampal neurometabolite levels and hippocampal volume in older adults with a low compared to a high risk of mild cognitive impairment (MCI). Seventy apparently healthy male/female older adults (aged 60-85 years old) were randomly allocated to a 12 week lower limb progressive resistance or no intervention, stratified for low (< 26/30) or high (≥ 26/30) Montreal Cognitive Assessment (MoCA) score, indicating MCI risk. Outcome measures were blood levels of insulin-like growth factor-1 (IGF-1), interleukin-6 (IL-6) or kynurenine (KYN); hippocampal total and subfield volumes of the cornu ammonis 1 (CA1) and 4 (CA4), subiculum, presubiculum, and dentate gyrus measured with magnetic resonance imaging (MRI); and hippocampus neurometabolites including total N-acetylaspartate (NAA), myo-inositol (mIns), and total creatine (Cr) measured with proton magnetic resonance spectroscopy (1H-MRS). We evaluated the intervention effect, cognitive status effect, their interaction and the bivariate relationship between exercise-induced changes between the outcome measures. Higher kynurenine levels (p = 0.015) and lower subiculum volumes (p = 0.043) were found in older adults with high MCI risk compared to older adults with low MCI risk. Exercise-induced CA1 volume changes were negatively correlated with hippocampal tNAA/mIns level changes (r = -0.605, p = 0.006). This study provides valuable insight in the multifactorial processes related to resistance training in older adults with low or high MCI risk.


Assuntos
Biomarcadores , Disfunção Cognitiva , Hipocampo , Imageamento por Ressonância Magnética , Plasticidade Neuronal , Treinamento Resistido , Humanos , Idoso , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Treinamento Resistido/métodos , Biomarcadores/metabolismo , Biomarcadores/sangue , Plasticidade Neuronal/fisiologia , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Fator de Crescimento Insulin-Like I/metabolismo , Cinurenina/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo
17.
Eur Rev Aging Phys Act ; 21(1): 9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600451

RESUMO

BACKGROUND: The aging brain exhibits a neuroinflammatory state, driven partly by peripheral pro-inflammatory stimuli, that accelerates cognitive deterioration. A growing body of evidence clearly indicates that physical exercise partly alleviates neuroinflammation and positively affects the aging process and cognition. In this randomized controlled trial, we aimed to observe the effect of 12 weeks of resistance training (RT) on peripheral biomarker levels, cognitive function changes and their interrelationship, and explore differences in those exercise-induced changes in older adults with high risk of mild cognitive impairment (MCI) compared to older adults with low risk of MCI. METHODS: Fifty-two participants (aged 60-85 years old, 28 female) were randomly allocated to a 12 week lower limb RT program consisting of two training sessions per week or waiting list control group. The Montreal Cognitive Assessment (MoCA) was used to stratify participants screened as high (< 26/30) or low risk (≥ 26/30) of MCI. We assessed serum Interleukin 6 (IL-6), Insulin-like Growth Factor-1 (IGF-1), and Kynurenine (KYN) levels. Cognitive measurement consisted of and four subtests of Automated Neuropsychological Assessment Metrics (ANAM), the two-choice reaction time, go/no-go, mathematical processing, and memory search test. RESULTS: Twelve weeks of RT improved Go/No-go test results in older adults with high MCI risk. RT did not significantly affect blood biomarkers. However, IGF-1 level increases were associated with improvements in response time on the mathematical processing test in the exercise group, and IL-6 level increases were associated with improvements in response time on the memory search test in the total group of participants. Finally, KYN levels significantly differed between older adults with low and high MCI risk but no significant associations with performance were found. CONCLUSION: Our study results suggest a different effect of RT on inhibitory control between older adults with low compared to high MCI risk. IGF-1 may play a role in the mechanism behind the cognitive benefit of RT and KYN may be a surrogate biomarker for neurodegeneration and cognitive decline.

18.
Magn Reson Imaging ; 109: 249-255, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521366

RESUMO

BACKGROUND: Neurological complications of the COVID-19 infection may be caused in part by local neurochemical and structural abnormalities that could not be detected during routine medical examinations. We examined within subject neurometabolic and structural brain alterations from pre-to post-COVID-19 in the hippocampal region of three elderly individuals (aged 63-68 years) who had a COVID-19 infection with mild symptoms. Patients were participating in an interventional study in which they were closely monitored at the time they were diagnosed with COVID-19. Patients 1 and 2 just completed 18-20 resistance training sessions prior to their diagnosis. Patient 3 was assigned to a non-training condition in the same study. METHODS: Whole brain magnetic resonance imaging (MRI) images and proton magnetic resonance spectroscopy (1H-MRS) of the left hippocampus were collected before and after infection. Structural and spectroscopic imaging measures post-COVID-19 were contrasted to the pre-COVID-19 measures and were compared with values for Minimal Detectable Change at 95% (MDC95) and 90% (MDC90) confidence from a group of six elderly (aged 60-79 years) without COVID-19 that participated in the same study. RESULTS: After SARS-COV-2 infection, we observed a reduction of glutamate-glutamine (Glx) in Patients 1 and 2 (≥ 42.0%) and elevation of myo-inositol (mIns) and N-acetyl-aspartate (NAA) in Patient 3 (≥ 36.4%); all > MDC90. MRI findings showed increased (Patients 1 and 2) or unchanged (Patient 3) hippocampal volume. CONCLUSIONS: Overall, findings from this exploratory study suggest that mild COVID-19 infection could be associated with development of local neuroinflammation and reduced glutamate levels in the hippocampus. Our 1H-MRS findings may have clinical value for explaining chronic neurological and psychological complaints in COVID-19 long-haulers.


Assuntos
COVID-19 , Idoso , Humanos , SARS-CoV-2 , Imageamento por Ressonância Magnética/métodos , Ácido Glutâmico , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Ácido Aspártico , Inositol
19.
Psychol Sport Exerc ; 65: 102344, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37665827

RESUMO

BACKGROUND: Given the extensive evidence on improvements in cognitive inhibition immediately following exercise, and the literature indicating that cognitive and motor inhibitory functions are mediated by overlapping brain networks, the aim of this study was to assess, for the first time, the effect of moderate intensity acute aerobic exercise on multi-limb motor inhibition, as compared to cognitive inhibition. METHOD: Participants were 36 healthy adults aged 40-60 years old (mean age 46.8 ± 5.7), who were randomly assigned to experimental or control groups. One-to-two weeks following baseline assessment, participants were asked to perform a three-limb (3-Limb) inhibition task and a vocal version of the Stroop before and after either acute moderate-intense aerobic exercise (experimental group) or rest (control). RESULTS: Similar rates of improvement were observed among both groups from baseline to the pre-test. Conversely, a meaningful, yet non-significant trend was seen among the experimental group in their pretest to posttest improvement in both cognitive and motor tasks. In addition, exploratory analysis revealed significant group differences in favor of the experimental group among highly fit participants on the 3-Limb task. A significant correlation was indicated between the inhibition conditions, i.e., choice in the motor inhibition and color/word (incongruent) in the cognitive inhibition, especially in the improvement observed following the exercise. DISCUSSION: Moderate-intensity acute aerobic exercise is a potential stimulator of both multi-limb motor inhibition and cognitive inhibition. It appears that high-fit participants benefit from exercise more than low-fit people. Additionally, performance on behavioral tasks that represent motor and cognitive inhibition is related. This observation suggests that fitness levels and acute exercise contribute to the coupling between cognitive and motor inhibition. Neuroimaging methods would allow examining brain-behavior associations of exercise-induced changes in the brain.


Assuntos
Exercício Físico , Inibição Psicológica , Adulto , Humanos , Pessoa de Meia-Idade , Encéfalo , Grupos Controle , Cognição
20.
Neuropsychologia ; 191: 108737, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995902

RESUMO

The efficacy of transcranial alternating current stimulation (tACS) is thought to be brain state-dependent, such that tACS during task performance would be hypothesised to offer greater potential for improving performance compared to tACS at rest. However, to date, no empirical study has tested this postulation. The current study compared the effects of dual-site beta tACS applied during a stop signal task (online) to the effects of the same tACS protocol applied prior to the task (offline) and a sham control stimulation in 53 young, healthy adults (32 female; 18-35 yrs). The right inferior frontal gyrus (rIFG) and centre (midline) of the pre-supplementary motor area (preSMA), which are thought to play critical roles in action cancellation, were simultaneously stimulated, sending phase-synchronised stimulation for 15 min with the aim of increasing functional connectivity. The offline group showed significant within-group improvement in response inhibition without showing overt task-related changes in functional connectivity measured with EEG connectivity analysis, suggesting offline tACS is efficacious in inducing behavioural changes potentially via a post-stimulation early plasticity mechanism. In contrast, neither the online nor sham group showed significant improvements in response inhibition. However, EEG connectivity analysis revealed significantly increased task-related functional connectivity following online stimulation and a medium effect size observed in correlation analyses suggested that an increase in functional connectivity in the beta band at rest was potentially associated with an improvement in response inhibition. Overall, the results indicate that both online and offline dual-site beta tACS can be beneficial in improving inhibitory control via distinct underlying mechanisms.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Feminino , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Pré-Frontal , Encéfalo , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA