Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38688280

RESUMO

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Assuntos
Neoplasias Hematológicas , Mutação , Fosfoproteínas , Fatores de Processamento de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Humanos , Animais , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/metabolismo , Camundongos , Splicing de RNA , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Hematopoese/genética , Células HEK293 , Íntrons , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
IUBMB Life ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391119

RESUMO

The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.

3.
Blood ; 139(26): 3737-3751, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35443029

RESUMO

Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapêutico , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Ceramidas/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Angew Chem Int Ed Engl ; : e202408053, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779788

RESUMO

Molecules bearing carboxylic acid, amide, and hydroxyl groups are ubiquitous in crystal engineering, where robust hydrogen-bonded synthons centred on these functionalities enable reliable crystal structure design. We now show that halogen bonding to the carbon π-system of such molecules, traditionally ignored in crystal engineering, permits the recognition and directional assembly of the resulting hydrogen-bonded structural subunits, leaving the archetypal hydrogen-bonded ring, ladder, and chain homosynthons intact, but repositioned in space. When applied to heteromolecular synthons, this enables rearranging more complex hydrogen-bonded motifs and the evolution of binary cocrystals into ternary ones through "latent" carbon-based recognition sites, demonstrating a rational approach to build higher-order solid-state supramolecular assemblies.

5.
Angew Chem Int Ed Engl ; : e202404539, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970305

RESUMO

We report a rapid, room-temperature mechanochemical synthesis of 2- and 3-dimensional boroxine covalent organic frameworks (COFs), enabled by using trimethylboroxine as a dehydrating additive to overcome the hydrolytic sensitivity of boroxine-based COFs. The resulting COFs display high porosity and crystallinity, with COF-102 being the first example of a mechanochemically prepared 3D COF, exhibiting a surface area of ca. 2,500 m2 g-1. Mechanochemistry enabled a >20-fold reduction in solvent use and ~100-fold reduction in reaction time compared with solvothermal methods, providing target COFs quantitatively with no additional work-up besides vacuum drying. Real-time Raman spectroscopy permitted the first quantitative kinetic analysis of COF mechanosynthesis, while transferring the reaction design to Resonant Acoustic Mixing (RAM) enabled synthesis of multi-gram amounts of the target COFs (tested up to 10 g).

6.
J Cardiothorac Vasc Anesth ; 36(12): 4505-4522, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100499

RESUMO

Cardiopulmonary bypass (CPB) is a complex biomechanical engineering undertaking and an essential component of cardiac surgery. However, similar to all complex bioengineering systems, CPB activities are prone to a variety of safety and biomechanical issues. In this narrative review article, the authors discuss the preventative and intraoperative management strategies for a number of intraoperative CPB emergencies, including cannulation complications (dissection, malposition, gas embolism), CPB equipment issues (heater-cooler failure, oxygenator issues, electrical failure, and tubing rupture), CPB circuit thrombosis, medication issues, awareness during CPB, and CPB issues during transcatheter aortic valve replacement.


Assuntos
Embolia Aérea , Substituição da Valva Aórtica Transcateter , Humanos , Ponte Cardiopulmonar/efeitos adversos , Emergências , Oxigenadores , Substituição da Valva Aórtica Transcateter/efeitos adversos
7.
Biochem J ; 476(21): 3211-3226, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31652307

RESUMO

Sphingosine kinase 1 (SK1) is a signalling enzyme that catalyses the phosphorylation of sphingosine to generate the bioactive lipid sphingosine 1-phosphate (S1P). A number of SK1 inhibitors and chemotherapeutics can induce the degradation of SK1, with the loss of this pro-survival enzyme shown to significantly contribute to the anti-cancer properties of these agents. Here we define the mechanistic basis for this degradation of SK1 in response to SK1 inhibitors, chemotherapeutics, and in natural protein turnover. Using an inducible SK1 expression system that enables the degradation of pre-formed SK1 to be assessed independent of transcriptional or translational effects, we found that SK1 was degraded primarily by the proteasome since several proteasome inhibitors blocked SK1 degradation, while lysosome, cathepsin B or pan caspase inhibitors had no effect. Importantly, we demonstrate that this proteasomal degradation of SK1 was enabled by its ubiquitination at Lys183 that appears facilitated by SK1 inhibitor-induced conformational changes in the structure of SK1 around this residue. Furthermore, using yeast two-hybrid screening, we identified Kelch-like protein 5 (KLHL5) as an important protein adaptor linking SK1 to the cullin 3 (Cul3) ubiquitin ligase complex. Notably, knockdown of KLHL5 or Cul3, use of a cullin inhibitor or a dominant-negative Cul3 all attenuated SK1 degradation. Collectively this data demonstrates the KLHL5/Cul3-based E3 ubiquitin ligase complex is important for regulation of SK1 protein stability via Lys183 ubiquitination, in response to SK1 inhibitors, chemotherapy and for normal SK1 protein turnover.


Assuntos
Proteínas de Transporte/metabolismo , Lisina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Humanos , Lisina/genética , Proteínas dos Microfilamentos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Ubiquitinação
8.
Blood ; 129(6): 771-782, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-27956387

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy where despite improvements in conventional chemotherapy and bone marrow transplantation, overall survival remains poor. Sphingosine kinase 1 (SPHK1) generates the bioactive lipid sphingosine 1-phosphate (S1P) and has established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers. The role and targeting of SPHK1 in primary AML, however, has not been previously investigated. Here we show that SPHK1 is overexpressed and constitutively activated in primary AML patient blasts but not in normal mononuclear cells. Subsequent targeting of SPHK1 induced caspase-dependent cell death in AML cell lines, primary AML patient blasts, and isolated AML patient leukemic progenitor/stem cells, with negligible effects on normal bone marrow CD34+ progenitors from healthy donors. Furthermore, administration of SPHK1 inhibitors to orthotopic AML patient-derived xenografts reduced tumor burden and prolonged overall survival without affecting murine hematopoiesis. SPHK1 inhibition was associated with reduced survival signaling from S1P receptor 2, resulting in selective downregulation of the prosurvival protein MCL1. Subsequent analysis showed that the combination of BH3 mimetics with either SPHK1 inhibition or S1P receptor 2 antagonism triggered synergistic AML cell death. These results support the notion that SPHK1 is a bona fide therapeutic target for the treatment of AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Clorometilcetonas de Aminoácidos/farmacologia , Amino Álcoois/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Biol Chem ; 290(35): 21376-92, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26152717

RESUMO

Pancreatic ß cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic ß cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the ß cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in ß cells.


Assuntos
Canais de Cálcio/metabolismo , Endossomos/metabolismo , Células Secretoras de Insulina/metabolismo , NADP/análogos & derivados , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Células Cultivadas , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Knockout , NADP/metabolismo
14.
Soft Matter ; 10(39): 7865-73, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25154421

RESUMO

We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd-virus.

15.
Blood ; 117(18): 4968-77, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21364192

RESUMO

A variety of endothelial agonist-induced responses are mediated by rises in intracellular Ca(2+), suggesting that different Ca(2+) signatures could fine-tune specific inflammatory and thrombotic activities. In search of new intracellular mechanisms modulating endothelial effector functions, we identified nicotinic acid adenine dinucleotide phosphate (NAADP) as a crucial second messenger in histamine-induced Ca(2+) release via H1 receptors (H1R). NAADP is a potent intracellular messenger mobilizing Ca(2+) from lysosome-like acidic compartments, functionally coupled to the endoplasmic reticulum. Using the human EA.hy926 endothelial cell line and primary human umbilical vein endothelial cells, we show that selective H1R activation increases intracellular NAADP levels and that H1R-induced calcium release involves both acidic organelles and the endoplasmic reticulum. To assess that NAADP links H1R to Ca(2+)-signaling we used both microinjection of self-inactivating concentrations of NAADP and the specific NAADP receptor antagonist, Ned-19, both of which completely abolished H1R-induced but not thrombin-induced Ca(2+) mobilization. Interestingly, H1R-mediated von Willebrand factor (VWF) secretion was completely inhibited by treatment with Ned-19 and by siRNA knockdown of 2-pore channel NAADP receptors, whereas thrombin-induced VWF secretion failed to be affected. These findings demonstrate a novel and specific Ca(2+)-signaling mechanism activated through H1R in human endothelial cells, which reveals an obligatory role of NAADP in the control of VWF secretion.


Assuntos
Células Endoteliais/metabolismo , NADP/análogos & derivados , Receptores Histamínicos H1/metabolismo , Fator de von Willebrand/metabolismo , Sequência de Bases , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Carbolinas/farmacologia , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Ácidos Heptanoicos/farmacologia , Histamina/farmacologia , Humanos , NADP/metabolismo , Antagonistas Nicotínicos/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , RNA Interferente Pequeno/genética , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia
16.
Biochem J ; 441(1): 435-42, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21967541

RESUMO

Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.


Assuntos
Plaquetas/metabolismo , NADP/análogos & derivados , Ativação Plaquetária/fisiologia , Plaquetas/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Carbolinas/farmacologia , Proteínas de Transporte/metabolismo , Humanos , NADP/metabolismo , Peptídeos/metabolismo , Piperazinas/farmacologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trombina/farmacologia
17.
Clin Med (Lond) ; 23(2): 115-118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36958832

RESUMO

Adrenal insufficiency is the inadequate secretion of glucocorticoid and/or mineralocorticoid secretion from the adrenal cortex. Primary adrenal insufficiency is the result of failure of the adrenal gland and secondary adrenal insufficiency is due to a lack of stimulation via pituitary adrenocorticotropic hormone or hypothalamic corticotropin-releasing hormone. Adrenal insufficiency may cause non-specific symptoms. Early detection and testing based on clinical suspicion may prevent subsequent presentation with adrenal crisis. Once identified, a low baseline cortisol (often <100 nmol/L) alongside raised adrenocorticotropic hormone (ACTH) can be enough to diagnose primary adrenal insufficiency. However, confirmatory testing can be done using the cosyntopin (Synacthen®) stimulation test or the insulin tolerance test, which is the gold standard for secondary adrenal insufficiency. The underlying cause of adrenal insufficiency can often be identified via a strategic approach to investigation. Adrenal crisis is a life-threatening medical emergency which must be treated immediately if there is strong clinical suspicion with fluids and corticosteroids otherwise can be fatal. Patients must be educated and empowered to take control of their own medical management.


Assuntos
Doença de Addison , Insuficiência Adrenal , Humanos , Hidrocortisona , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/terapia , Hormônio Adrenocorticotrópico , Hormônio Liberador da Corticotropina
18.
Biochem Biophys Res Commun ; 418(2): 353-8, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22274607

RESUMO

Cyclic ADP-ribose (cADPR) is a second messenger that acts on ryanodine receptors to mobilize Ca(2+). cADPR has a net negative charge at physiological pH making it not passively membrane permeant thereby requiring it to be injected, electroporated or loaded via liposomes. Such membrane impermeance of other charged intracellular messengers (including cyclic AMP, inositol 1,4,5-trisphosphate and nicotinic acid adenine dinucleotide phosphate) and fluorescent dyes (including fura-2 and fluorescein) has been overcome by synthesizing masked analogs (prodrugs), which are passively permeant and hydrolyzed to the parent compound inside cells. We now report the synthesis and biological activity of acetoxymethyl (AM) and butoxymethyl (BM) analogs of cADPR. Extracellular addition of cADPR-AM or cADPR-BM to neuronal cells in primary culture or PC12 neuroblastoma cells induced increases in cytosolic Ca(2+). Pre-incubation of PC12 cells with thapsigargin, ryanodine or caffeine eliminated the response to cADPR-AM, whereas the response still occurred in the absence of extracellular Ca(2+). Combined, these data demonstrate that masked cADPR analogs are cell-permeant and biologically active. We hope these cell-permeant tools will facilitate cADPR research and reveal its diverse physiological functions.


Assuntos
Permeabilidade da Membrana Celular , ADP-Ribose Cíclica/análogos & derivados , ADP-Ribose Cíclica/metabolismo , Animais , Transporte Biológico , Cafeína/farmacologia , Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , ADP-Ribose Cíclica/síntese química , Células PC12 , Ratos , Rianodina/farmacologia , Ouriços-do-Mar , Tapsigargina/farmacologia
19.
Biochem Biophys Res Commun ; 427(2): 326-9, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995315

RESUMO

Evidence suggests that ß-Adrenergic receptor signaling increases heart rate and force through not just cyclic AMP but also the Ca(2+)-releasing second messengers NAADP (nicotinic acid adenine dinucleotide phosphate) and cADPR (cyclic ADP-ribose). Nevertheless, proof of the physiological relevance of these messengers requires direct measurements of their levels in response to receptor stimulation. Here we report that in intact Langendorff-perfused hearts ß-adrenergic stimulation increased both messengers, with NAADP being transient and cADPR being sustained. Both NAADP and cADPR have physiological and therefore pathological relevance by providing alternative drug targets in the ß-adrenergic receptor signaling pathway.


Assuntos
ADP-Ribose Cíclica/metabolismo , Miocárdio/metabolismo , NADP/análogos & derivados , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Cobaias , Coração/efeitos dos fármacos , Técnicas In Vitro , NADP/metabolismo , Transdução de Sinais
20.
Saudi J Anaesth ; 16(1): 120-123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261602

RESUMO

Venovenous extracorporeal membrane oxygenation (VV-ECMO) is increasingly used in managing challenging airway and thoracic cases with complex airway manipulations. We present a case of a complex tracheal resection needing prolonged apnea times for which VV-ECMO was electively planned. Intraoperatively, the team was faced with continued oxygen desaturations during periods of apnea. With an algorithmic approach to troubleshooting hypoxemia, several factors were taken into consideration. Apneic oxygenation was applied to the open tracheal segment. Despite an open airway, the applied apneic oxygenation facilitated oxygenation to the portion of the cardiac output that was being shunted through the lungs as opposed to the VV-ECMO circuit, enabling uninterrupted completion of the surgical resection and reanastomosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA