RESUMO
PURPOSE: To investigate the feasibility of rapid CEST MRI acquisition for evaluating oxidative phosphorylation (OXPHOS) in human skeletal muscle at 3T, utilizing ultrafast Z-spectroscopy (UFZ) combined with MRI and the Polynomial and Lorentzian line-shape Fitting (PLOF) technique. METHODS: UFZ MRI on muscle was evaluated with turbo spin echo (TSE) and 3D EPI readouts. Five healthy subjects performed in-magnet plantar flexion exercise (PFE) and subsequent changes of amide, PCr, and partial PCr mixed Cr (Cr+) CEST dynamic signals post-exercise were enabled by PLOF fitting. PCr/Cr CEST signal was further refined through pH correction by using the ratios between PCr/Cr and amide signals, named PCAR/CAR, respectively. RESULTS: UFZ MRI with TSE readout significantly reduces acquisition time, achieving a temporal resolution of <50 s for collecting high-resolution Z-spectra. Following PFE, the recovery/decay times (τ) for both PCr and Cr in the gastrocnemius muscle of the calf were notably longer when determined using PCr/Cr CEST compared to those after pH correction with amideCEST, namely τ Cr + $$ {\tau}_{Cr^{+}} $$ = 87.1 ± 15.8 s and τ PCr $$ {\tau}_{PCr} $$ = 98.1 ± 20.4 s versus τ CAR $$ {\tau}_{CAR} $$ = 32.9 ± 19.7 s and τ PCAR $$ {\tau}_{PCAR} $$ = 43.0 ± 13.0 s, respectively. τ PCr $$ {\tau}_{PCr} $$ obtained via 31P MRS ( τ PCr $$ {\tau}_{PCr} $$ = 50.3 ± 6.2 s) closely resemble those obtained from pH-corrected PCr/Cr CEST signals. CONCLUSION: The outcomes suggest potential of UFZ MRI as a robust tool for non-invasive assessment of mitochondrial function in skeletal muscles. pH correction is critical for the reliable OXPHOS measurement by CEST.
RESUMO
PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.
Assuntos
Amidas , Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Amidas/química , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagem Ecoplanar/métodos , Glioma/diagnóstico por imagem , Algoritmos , Razão Sinal-Ruído , Neoplasias Encefálicas/diagnóstico por imagem , Adulto , Processamento de Imagem Assistida por Computador/métodos , Masculino , Feminino , Guanidina/químicaRESUMO
A stylized macro-scale energy model of least-cost electricity systems relying only on wind and solar generation was used to assess the value of different storage technologies, individually and combined, for the contiguous U.S. as well as for four geographically diverse U.S. load-balancing regions. For the contiguous U.S. system, at current costs, when only one storage technology was deployed, hydrogen energy storage produced the lowest system costs, due to its energy-capacity costs being the lowest of all storage technologies modeled. Additional hypothetical storage technologies were more cost-competitive than hydrogen (long-duration storage) only at very low energy-capacity costs, but they were more cost-competitive than Li-ion batteries (short-duration storage) at relatively high energy- and power-capacity costs. In all load-balancing regions investigated, the least-cost systems that included long-duration storage had sufficient energy and power capacity to also meet short-duration energy and power storage needs, so that the addition of short-duration storage as a second storage technology did not markedly reduce total system costs. Thus, in electricity systems that rely on wind and solar generation, contingent on social and geographic constraints, long-duration storage may cost-effectively provide the services that would otherwise be provided by shorter-duration storage technologies.
RESUMO
BACKGROUND: Deep learning has demonstrated significant advancements across various domains. However, its implementation in specialized areas, such as medical settings, remains approached with caution. In these high-stake environments, understanding the model's decision-making process is critical. This study assesses the performance of different pretrained Bidirectional Encoder Representations from Transformers (BERT) models and delves into understanding its decision-making within the context of medical image protocol assignment. METHODS: Four different pre-trained BERT models (BERT, BioBERT, ClinicalBERT, RoBERTa) were fine-tuned for the medical image protocol classification task. Word importance was measured by attributing the classification output to every word using a gradient-based method. Subsequently, a trained radiologist reviewed the resulting word importance scores to assess the model's decision-making process relative to human reasoning. RESULTS: The BERT model came close to human performance on our test set. The BERT model successfully identified relevant words indicative of the target protocol. Analysis of important words in misclassifications revealed potential systematic errors in the model. CONCLUSIONS: The BERT model shows promise in medical image protocol assignment by reaching near human level performance and identifying key words effectively. The detection of systematic errors paves the way for further refinements to enhance its safety and utility in clinical settings.
Assuntos
Processamento de Linguagem Natural , Resolução de Problemas , HumanosRESUMO
BACKGROUND: Kidney development is regulated by cellular interactions between the ureteric epithelium, mesenchyme, and stroma. Previous studies demonstrate essential roles for stromal ß-catenin in kidney development. However, how stromal ß-catenin regulates kidney development is not known. We hypothesize that stromal ß-catenin modulates pathways and genes that facilitate communications with neighboring cell populations to regulate kidney development. RESULTS: We isolated purified stromal cells with wild type, deficient, and overexpressed ß-catenin by fluorescence-activated cell sorting and conducted RNA Sequencing. A Gene Ontology network analysis demonstrated that stromal ß-catenin modulates key kidney developmental processes, including branching morphogenesis, nephrogenesis and vascular formation. Specific stromal ß-catenin candidate target genes that may mediate these effects included secreted, cell-surface and transcriptional factors that regulate branching morphogenesis and nephrogenesis (Wnts, Bmp, Fgfr, Tcf/Lef) and secreted vascular guidance cues (Angpt1, VEGF, Sema3a). We validated established ß-catenin targets including Lef1 and novel candidate ß-catenin targets including Sema3e which have unknown roles in kidney development. CONCLUSIONS: These studies advance our understanding of gene and biological pathway dysregulation in the context of stromal ß-catenin misexpression during kidney development. Our findings suggest that during normal kidney development, stromal ß-catenin may regulate secreted and cell-surface proteins to communicate with adjacent cell populations.
Assuntos
Ureter , beta Catenina , beta Catenina/genética , beta Catenina/metabolismo , Rim/metabolismo , Fatores de Transcrição/metabolismo , Ureter/metabolismo , Transdução de SinaisRESUMO
Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPßCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPßCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPßCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPßCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPßCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPßCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPßCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPßCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPßCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.
Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/tratamento farmacológico , Fatores Etários , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resultado do TratamentoRESUMO
Gastric cancer is a common cancer worldwide, particularly in East Asia. Chemotherapy is used in adjuvant or palliative therapies for gastric cancer. However, subsequent chemoresistance often develops. Growth differentiation factor 15 (GDF15) links to several cancers, but its effect on chemoresistance in gastric cancer remains unclear. Here, we analyzed clinical samples from genetic databases and included patients with gastric cancer. We dissected the regulatory mechanism underlying GDF15-mediated resistance of cisplatin in human gastric cancer cells. We showed that GDF15 serum levels might be a valuable biomarker for predicting prognosis in gastric cancer. The expressions of GDF15 and its receptor glial cell-derived neurotrophic factor family receptor a-like (GFRAL) in gastric tumors are important for malignant progression. Moreover, GDF15 expression is increased in gastric cancer cells with cisplatin resistance, resulting from elevated intracellular glutathione (GSH) and antioxidant activities. Upregulated GDF15 could increase intracellular GSH content by activating the GFRAL-GCN2-eIF2α-ATF4 signaling, enhancing cystine-uptake transporter xCT expression, and contributing biosynthesis of GSH in human gastric cancer cells. In conclusion, our results indicate that GDF15 could induce chemoresistance by upregulating xCT expression and GSH biosynthesis in human gastric cancer cells. Targeting GDF15 could be a promising treatment method for gastric cancer progression.
Assuntos
Cisplatino , Neoplasias Gástricas , Humanos , Cisplatino/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulação para Cima , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Glutationa/metabolismoRESUMO
PURPOSE: To estimate the exchange rate of creatine (Cr) CEST and to evaluate the pH sensitivity of guanidinium (Guan) CEST in the mouse brain. METHODS: Polynomial and Lorentzian line-shape fitting (PLOF) were implemented to extract the amine, amide, and Guan CEST signals from the brain Z-spectrum at 11.7T. Wild-type (WT) and knockout mice with the guanidinoacetate N-methyltransferase deficiency (GAMT-/- ) that have low Cr and phosphocreatine (PCr) concentrations in the brain were used to extract the CrCEST signal. To quantify the CrCEST exchange rate, a two-step Bloch-McConnell (BM) fitting was used to fit the CrCEST line-shape, B1 -dependent CrCEST, and the pH response with different B1 values. The pH in the brain cells was altered by hypercapnia to measure the pH sensitivity of GuanCEST. RESULTS: Comparison between the Z-spectra of WT and GAMT-/- mice suggest that the CrCEST is between 20% and 25% of the GuanCEST in the Z-spectrum at 1.95 ppm between B1 = 0.8 and 2 µT. The CrCEST exchange rate was found to be around 240-480 s-1 in the mouse brain, which is significantly lower than that in solutions (â¼1000 s-1 ). The hypercapnia study on the mouse brain revealed that CrCEST at B1 = 2 µT and amineCEST at B1 = 0.8 µT are highly sensitive to pH change in the WT mouse brain. CONCLUSIONS: The in vivo CrCEST exchange rate is slow, and the acquisition parameters for the CrCEST should be adjusted accordingly. CrCEST is the major contribution to the opposite pH-dependence of GuanCEST signal under different conditions of B1 in the brain.
Assuntos
Creatina , Imageamento por Ressonância Magnética , Animais , Camundongos , Hipercapnia , Fosfocreatina , Encéfalo/diagnóstico por imagemRESUMO
Autoantibodies play a major pathogenic role in rheumatoid arthritis. T follicular helper (Tfh) cells promote germinal center B cell and Ab responses. Excessive Tfh cell responses lead to autoimmunity, and therefore, counterregulation is crucial. T follicular regulatory (Tfr) cells, mainly differentiated from T regulatory cells, can negatively regulate Tfh and germinal center B cells. Dysbiosis is involved in rheumatoid arthritis's pathogenesis. We previously demonstrated that the gut microbiota, segmented filamentous bacteria (SFB), promote autoimmune arthritis by inducing Tfh cells. However, little is known regarding whether gut microbiota influence systemic (nongut) Tfr cells, impacting gut-distal autoimmunity. In this study, using SFB in autoimmune arthritic K/BxN mice, we demonstrated that SFB-induced arthritis is linked to the reduction of Tfr cells' CTLA-4, the key regulatory molecule of Tfr cells. This SFB-mediated CTLA-4 reduction is associated with increased Tfr glycolytic activity, and glycolytic inhibition increases Tfr cells' CTLA-4 levels and reduces arthritis. The surface expression of CTLA-4 is tied to TCR signaling strength, and we discovered that SFB-reduced CTLA-4 is associated with a reduction of Nur77, an indicator of TCR signaling strength. Nur77 is known for repressing glycolytic activity. Using a loss-of-function study, we demonstrated that Nur77+/- haplodeficiency increases glycolysis and reduces CTLA-4 on Tfr cells, which is associated with increased arthritis and anti-glucose-6-phosphate isomerase titers. Tfr-specific deletion (KRN.Foxp3CreBcl-6fl/fl) in autoimmune condition reveals that Tfr cells repress arthritis, Tfh cells, and autoantibody responses and that SFB can mitigate this repression. Overall, these findings demonstrated that gut microbiota distally impact systemic autoimmunity by fine-tuning Tfr cells.
Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/microbiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Autoimunidade/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoanticorpos/imunologia , Bactérias/imunologia , Antígeno CTLA-4/imunologia , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
OBJECTIVE: Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Mania is an uncommon, but debilitating, psychiatric occurrence following TBI. The literature on mania following TBI is largely limited to case reports and case series. In the present review, the investigators describe the clinical, diagnostic, and treatment characteristics of mania following TBI. METHODS: A systematic search of MEDLINE, EMBASE, and PsycINFO was conducted for English-language studies published from 1980 to July 15, 2021. The included studies provided the required individual primary data and sufficient information on clinical presentation or treatment of manic symptoms. Studies with patients who reported a history of mania or bipolar disorder prior to TBI and studies with patients who sustained TBI before adulthood were excluded. RESULTS: Forty-one studies were included, which reported information for 50 patients (the mean±SD age at mania onset was 39.1±14.3 years). Patients were more frequently male, aged <50 years, and without a personal or family history of psychiatric disorders. Although 74% of patients reported mania developing within 1 year following TBI, latencies of up to 31 years were observed. Illness trajectory varied from a single manic episode to recurrent mood episodes. Rapid cycling was reported in six patients. Mood stabilizers and antipsychotics were most frequently used to improve symptoms. CONCLUSIONS: Heterogeneity of lesion locations and coexisting vulnerabilities make causality difficult to establish. Valproate or a second-generation antipsychotic, such as olanzapine or quetiapine, may be considered first-line therapy in the absence of high-level evidence for a more preferred treatment. Early escalation to combined therapy (mood stabilizer and second-generation antipsychotic) is recommended to control symptoms and prevent recurrence. Larger prospective studies and randomized controlled trials are needed to refine diagnostic criteria and provide definitive treatment recommendations.
RESUMO
BACKGROUND: Efforts are needed to strengthen evidence and guidance for appropriate deprescribing for older nursing home (NH) residents, who are disproportionately affected by polypharmacy and inappropriate prescribing. Given the challenges of conducting randomized drug withdrawal studies in this population, data from observational studies of routinely collected healthcare data can be used to identify patients who are apparent candidates for deprescribing and evaluate subsequent health outcomes. To improve the design and interpretation of observational studies examining determinants, risks, and benefits of deprescribing specific medications in older NH residents, we sought to propose a conceptual framework of the determinants of deprescribing in older NH residents. METHODS: We conducted a scoping review of observational studies examining patterns and potential determinants of discontinuing or de-intensifying (i.e., reducing) medications for NH residents. We searched PubMed through September 2021 and included studies meeting the following criteria: conducted among adults aged 65 + in the NH setting; (2) observational study designs; (3) discontinuation or de-intensification as the primary outcome with key determinants as independent variables. We conceptualized deprescribing as a behavior through a social-ecological lens, potentially influenced by factors at the intrapersonal, interpersonal, organizational, community, and policy levels. RESULTS: Our search in PubMed identified 250 potentially relevant studies published through September 2021. A total of 14 studies were identified for inclusion and were subsequently synthesized to identify and group determinants of deprescribing into domains spanning the five core social-ecological levels. Our resulting framework acknowledges that deprescribing is strongly influenced by intrapersonal, patient-level clinical factors that modify the expected benefits and risks of deprescribing, including index condition attributes (e.g., disease severity), attributes of the medication being considered for deprescribing, co-prescribed medications, and prognostic factors. It also incorporates the hierarchical influences of interpersonal differences relating to healthcare providers and family caregivers, NH facility and health system organizational structures, community trends and norms, and finally healthcare policies. CONCLUSIONS: Our proposed framework will serve as a useful tool for future studies seeking to use routinely collected healthcare data sources and observational study designs to evaluate determinants, risks, and benefits of deprescribing for older NH residents.
Assuntos
Desprescrições , Casas de Saúde , Humanos , Idoso , Prescrição Inadequada/prevenção & controle , Polimedicação , Projetos de Pesquisa , Estudos Observacionais como AssuntoRESUMO
PURPOSE: PE is a pregnancy-specific syndrome and one of the main causes of maternal, fetal, and neonatal mortality. PRDX1 is an antioxidant that regulates cell proliferation, differentiation, and apoptosis. The aim of this study is to investigate the effect of PRDX1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. METHODS: Western blotting, RT-qPCR, and immunofluorescence were used to examine the expression of PRDX1 in placentas. PRDX1-siRNA was transfected to knockdown PRDX1 in HTR-8/SVneo cells. The biological function of HTR-8/SVneo cells was detected by wound healing, invasion, tube formation, CCK-8, EdU, flow cytometry, and TUNEL assays. Western blotting was used to detect the protein expression of cleaved-Caspase3, Bax, LC3II, Beclin1, PTEN, and p-AKT. DCFH-DA staining was used to detect ROS levels by flow cytometry. RESULTS: PRDX1 was significantly decreased in placental trophoblasts in PE patients. Following the exposure of HTR-8/SVneo cells to H2O2, PRDX1 expression was significantly decreased, LC3II and Beclin1 expression was notably increased, and ROS level was also markedly increased. PRDX1 knockdown impaired migration, invasion, and tube-formation abilities and promoted apoptosis, which was accompanied by an increased expression of cleaved-Caspase3 and Bax. PRDX1 knockdown induced a significant decrease in LC3II and Beclin1 expression, along with an elevated p-AKT expression and a decreased PTEN expression. PRDX1 knockdown increased intracellular ROS levels, and NAC attenuated PRDX1 knockdown-induced apoptosis. CONCLUSION: PRDX1 regulated trophoblast function through the PTEN/AKT signaling pathway to affect cell autophagy and ROS level, which provided a potential target for the treatment of PE.
Assuntos
Pré-Eclâmpsia , Trofoblastos , Recém-Nascido , Humanos , Gravidez , Feminino , Trofoblastos/metabolismo , Placenta/metabolismo , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/genética , Proteína X Associada a bcl-2 , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/farmacologia , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Estresse Oxidativo/genética , Autofagia/genética , ApoptoseRESUMO
This paper designs a fast image-based indoor localization method based on an anchor control network (FILNet) to improve localization accuracy and shorten the duration of feature matching. Particularly, two stages are developed for the proposed algorithm. The offline stage is to construct an anchor feature fingerprint database based on the concept of an anchor control network. This introduces detailed surveys to infer anchor features according to the information of control anchors using the visual-inertial odometry (VIO) based on Google ARcore. In addition, an affine invariance enhancement algorithm based on feature multi-angle screening and supplementation is developed to solve the image perspective transformation problem and complete the feature fingerprint database construction. In the online stage, a fast spatial indexing approach is adopted to improve the feature matching speed by searching for active anchors and matching only anchor features around the active anchors. Further, to improve the correct matching rate, a homography matrix filter model is used to verify the correctness of feature matching, and the correct matching points are selected. Extensive experiments in real-world scenarios are performed to evaluate the proposed FILNet. The experimental results show that in terms of affine invariance, compared with the initial local features, FILNet significantly improves the recall of feature matching from 26% to 57% when the angular deviation is less than 60 degrees. In the image feature matching stage, compared with the initial K-D tree algorithm, FILNet significantly improves the efficiency of feature matching, and the average time of the test image dataset is reduced from 30.3 ms to 12.7 ms. In terms of localization accuracy, compared with the benchmark method based on image localization, FILNet significantly improves the localization accuracy, and the percentage of images with a localization error of less than 0.1m increases from 31.61% to 55.89%.
RESUMO
Pavlovian fear conditioning is a widely used behavioral paradigm for studying associative learning in rodents. Despite early recognition that subjects may engage in a variety of both conditioned and unconditioned responses, the last several decades have seen the field narrow its focus to measure freezing as the sole indicator of conditioned fear. We previously reported that female rats were more likely than males to engage in darting, an escape-like conditioned response that is associated with heightened shock reactivity. To determine how experimental parameters contribute to the frequency of darting in both males and females, we manipulated factors such as chamber size, shock intensity, and number of trials. To better capture fear-related behavioral repertoires in our animals, we developed ScaredyRat, an open-source custom Python tool that analyzes Noldus Ethovision-generated raw data files to identify darters and quantify both conditioned and unconditioned responses. We found that, like freezing, conditioned darting occurrences scale with experimental alterations. While most darting occurs in females, we found that with an extended training protocol, darting can emerge in males as well. Collectively, our data suggest that darting reflects a behavioral switch in conditioned responding that is a product of an individual animal's sex, shock reactivity, and experimental parameters, underscoring the need for careful consideration of sex as a biological variable in classic learning paradigms.
Assuntos
Condicionamento Clássico , Medo , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Feminino , Humanos , Masculino , RatosRESUMO
BACKGROUND: Free circular RNAs(circRNAs) escaping from primary lesion of cancer to brain are strictly regulated by blood-brain barrier and therefore cerebrospinal fluid (CSF) circRNAs have potential advantage in exploring biomarkers and mechanism of brain metastasis in lung cancer. METHODS: We collected paired cerebrospinal fluid, plasma and tumor tissues from 21 lung adenocarcinoma (ADC) patients with brain metastases (BM) and performed RNA sequencing. RESULTS: Compared to tumor tissue and plasma, circRNAs in CSF were characterized by lower number of spieces but higher abundance. Notably, CSF-circRNAs displayed high heterogeneity among different BM lung ADC patients. A total of 60 CSF-circRNAs was identified and associated with shorten overall survival. The circRNA-miRNA-mRNA network analysis revealed that the 60 CSF-circRNAs involved in cancer-associated pathways, and five of them showed strong association with WNT signaling pathway. Validation by RT-PCR of CSF and in vitro experiments of the five candidate circRNAs support their potential roles in cell proliferation and invasion. CONCLUSIONS: In summary, our results depicted the heterogenous CSF-circRNAs profiles among BM lung ADC and implied that CSF-circRNAs may be promising prognosis-related biomarkers.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , MicroRNAs , Adenocarcinoma de Pulmão/genética , Neoplasias Encefálicas/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , RNA Circular/genéticaRESUMO
PURPOSE: To develop phase alternate labeling with null recovery (PALAN) MRI methods for the quantification of the water exchange between cerebrospinal fluid (CSF) and other surrounding tissues in the brain. METHOD: In both T1 -PALAN and apparent diffusion coefficient (ADC)-PALAN MRI methods, the cerebrospinal fluid signal was nulled, whereas the partial recovery of other tissues with shorter T1 (T1 -PALAN) or lower ADC values (ADC-PALAN) was labeled by alternating the phase of pulses. The water exchange was extracted from the difference between the recovery curves of CSF with and without labeling. RESULTS: Both T1 -PALAN and ADC-PALAN observed a rapid occurrence of CSF water exchange with the surrounding tissues at 67 ± 56 ms and 13 ± 2 ms transit times, respectively. The T1 and ADC-PALAN signal peaked at 1.5 s. The CSF water exchange was 1153 ± 270 mL/100 mL/min with T1 -PALAN in the third and lateral ventricles, which was higher than 891 ± 60 mL/100 mL/min obtained by ADC-PALAN. T1 -PALAN ∆S values for the rostral and caudal ventricles are 0.015 ± 0.013 and 0.034 ± 0.01 (p = 0.022, n = 5), whereas similar ΔS values in both rostral and caudal lateral ventricles were observed by ADC-PALAN (3.9 ± 1.9 × 10-3 vs 4.4 ± 1.4 × 10-3 ; p = 0.66 and n = 5). CONCLUSION: The PALAN methods are suitable tools to study CSF water exchange across different compartments in the brain.
Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Ventrículos Cerebrais , Líquido Cefalorraquidiano/diagnóstico por imagemRESUMO
PURPOSE: A non-invasive magnetization transfer indirect spin labeling (MISL) MRI method is developed to quantify the water exchange between cerebrospinal fluid (CSF) and other tissues in the brain and to examine the age-dependence of water exchange. METHOD: In the pulsed MISL, we implemented a short selective pulse followed by a post-labeling delay before an MRI acquisition with a long echo time; in the continuous MISL, a train of saturation pulses was applied. MISL signal (∆Z) was obtained by the subtraction of the label MRI at -3.5 ppm from the control MRI at 200 ppm. CSF was extracted from the mouse ventricles for the MISL optimization and validation. Comparison between wild type (WT) and aquaporin-4 knockout (AQP4-/- ) mice was performed to examine the contributions of CSF water exchange, whereas its age-dependence was investigated by comparing the adult and young WT mice. RESULTS: The pulsed MISL method observed that the MISL signal reached the maximum at 1.5 s. The continuous MISL method showed the highest MISL signal in the fourth ventricle (∆Z = 13.5% ± 1.4%), whereas the third ventricle and the lateral ventricles had similar MISL ∆Z values (∆Z = 12.0% ± 1.8%). Additionally, significantly lower ∆Z (9.3%-18.7% reduction) was found in all ventricles for the adult mice than those of the young mice (p < 0.02). For the AQP4-/- mice, the ∆Z values were 5.9%-8.3% smaller than those of the age-matched WT mice in the lateral and fourth ventricles, but were not significant. CONCLUSION: The MISL method has a great potential to study CSF water exchange with the surrounding tissues in brain.
Assuntos
Imageamento por Ressonância Magnética , Água , Animais , Encéfalo/diagnóstico por imagem , Ventrículos Cerebrais , Imageamento por Ressonância Magnética/métodos , Camundongos , Marcadores de SpinRESUMO
Idarubicin (IDA), an anthracycline antineoplastic drug, is commonly used in the treatment of acute myeloid leukemia (AML) with reasonable response rates and clinical benefits. However, some patients still relapse, or do not respond, and suffer high fatality rates. Recent studies have shown that overexpression of PARP-1 may represent an important risk factor in AML patients. The aim of the present study was to determine the underlying molecular mechanisms by which the PARP-1 inhibitor Olaparib enhances the chemosensitivity of the leukemia cell line K562 and THP1 to IDA. Our data demonstrated that PARP-1 is upregulated in AML patients as well as in K562 and THP1 cells, and that the suppression of PARP-1 activity by Olaparib enhances the inhibitory effect of IDA. A mechanistic study revealed that Olaparib decreases the expressions of p-ATM, p-IκBα, XIAP and p65, and upregulates Bax, cleaved-Caspase-3 and γ-H2AX. Olaparib can enhance the induction of DNA damage by IDA, probably mediated by the inhibition of the ATM-related DNA damage response. Moreover, we also found that the nuclear translocation of p65 and the nuclear export of NEMO are inhibited when IDA and Olaparib are combined. Our results suggest that Olaparib attenuates the activity of the NF-κB pathway and decreases the DNA damage response induced by IDA. Therefore, we conclude that Olaparib is a potentially valuable chemosensitizer for leukemia patients.
Assuntos
Leucemia Mieloide Aguda , NF-kappa B , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Idarubicina/farmacologia , Idarubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , NF-kappa B/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêuticoRESUMO
PURPOSE: The dysfunction of trophoblast during inflammation plays an important role in PE. Formyl peptide receptor 2 (FPR2) plays crucial roles in the development of inflammation-associated disease. This present study aimed to explore the effect of FPR2 on a trophoblast cellular model of preeclampsia. METHODS: The expression of FPR2 in placenta was detected by immunohistochemical staining and western blotting. Transfection of siRNA was used to knockdown FPR2 in HTR-8/SVneo cells. Inflammatory cytokines were detected by ELISA. CCK8, Transwell, wound healing, FACS and tube formation assays were performed to observe the abilities of cell proliferation, migration, invasion, apoptosis and angiogenesis. Western blotting was implemented to clarify that NF-κB signaling pathway was downstream of FPR2. RESULTS: The expression levels of FPR2 were higher in placental tissues of patients with PE. Knockdown of FPR2 expression by siFPR2 or inhibition of its activity by WRW4 decreased the release of proinflammatory cytokines in HTR8/SVneo cells treated with LPS. Knockdown of FPR2 expression or inhibition of its activity further reversed the LPS-induced attenuation of the proliferation, migration, invasion and angiogenesis and increase in apoptosis in HTR8/SVneo cells. Moreover, the NF-κB signaling pathway was activated in both placental tissues of patients with PE and LPS-treated HTR8/SVneo cells. However, the activation was attenuated when FPR2 was knocked down or inhibited. CONCLUSION: Suppression of FPR2 expression alleviated the effects of inflammation induced by LPS on trophoblasts via the NF-κB signaling pathway, which provided a novel and potential strategy for the treatment of PE.
Assuntos
Expressão Gênica/fisiologia , Inflamação/prevenção & controle , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Lipoxinas/antagonistas & inibidores , Trofoblastos/metabolismo , Adulto , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Inflamação/fisiopatologia , NF-kappa B/antagonistas & inibidores , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/fisiopatologia , Gravidez , Receptores de Formil Peptídeo/genética , Receptores de Lipoxinas/genéticaRESUMO
Dissipating energy by activating thermogenic adipose to combating obesity attracts many interests. Ski-interacting protein (Skip) has been known to play an important role in cell proliferation and differentiation, but whether it participates in energy metabolism is not known. Our previous study revealed that BTM-0512 could induce beige adipose formation, accompanying with up-regulation of Skip, but the role of Skip in metabolism was unknown. In this study, we mainly investigated whether Skip was involved in beige remodeling of subcutaneous white preadipocytes as well as in lipid metabolism of differentiated beige adipocytes. The results showed that in high fat diet-induced obesity mice, the protein levels of Skip in subcutaneous and visceral white adipose as well as in brown adipose were all down-regulated, especially in subcutaneous white adipose. Then we cultured subcutaneous adipose derived-stem cells (ADSCs) and found knock-down of Skip (siSkip) inhibited the expressions of thermogenic adipose specific genes including PRDM16 and UCP1 in both undifferentiated ADSCs and differentiated beige adipocytes, which could abolish the effects of BTM-0512 on beige remodeling. We further observed that siSkip affected multiple rate-limiting enzymes in lipid metabolism. The expressions of ACC, GPAT-1, HSL and ATGL were down-regulated, while CPT1α expression was up-regulated by siSkip. The expression of AMPK was also decreased by siSkip. In conclusion, our study demonstrated that Skip might play an important role in the beige remodeling of white adipocytes as well as lipid metabolism of beige adipose.