Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 201: 108003, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838064

RESUMO

In this study, silkworms were treated by injection of the bioactive depsipeptide beauvericin (BEA) to explore its effect on the cellular immunity of larvae of the silkworm Bombyx mori. The results showed that: The LC50 of BEA for silkworms on the 3rd day of the 4th instar was 362.36 µM. The total count of circulating hemocytes in the silkworms decreased at 12 h after injection with 350 µM BEA, and reached the minimum value at 72 h post-treatment; at 48 h post-treatment, a large number of nodules formed by the aggregation of blood cells of the silkworms were observed under the light microscope. The survival rate of hemocytes in the larvae treated with BEA was significantly reduced in a dose-dependent manner in vivo and in vitro. The encapsulation of Q-Sepharose Fast Flow (QFF) gel particles by hemocytes in the treatment group was significantly higher than that in the control group at 1.5 h and 3 h post-treatment (P < 0.05). Moreover, the melanization ratio of QFF gel particles kept increasing with treatment time. The melanization rate at 24 h after treatment was significantly higher than that at other times (P < 0.05), reaching 55.33 %. Under the scanning electron microscope, BEA-treated larvae showed protrusions on the surface of their blood cells in vivo. Under the transmission electron microscope, it was observed that silkworm hemocytes were vacuolated. This study demonstrated that BEA had an effect on the blood cells of silkworms, and has thrown some light on the inhibitory effect and mechanism of BEA on insect cellular immunity.


Assuntos
Bombyx , Depsipeptídeos , Animais , Hemócitos , Depsipeptídeos/farmacologia , Larva , Proteínas de Insetos
2.
J Environ Manage ; 317: 115368, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35636112

RESUMO

Myriophyllum aquaticum (M. aquaticum) can be used in constructed wetlands (CWs) to effectively purify swine wastewater with high-ammonia nitrogen (NH3-N and NH4+-N) concentrations. However, the understanding of its tolerance mechanism to ammonia nitrogen is limited. The physiological response and tolerance mechanism of M. aquaticum to a wide range of NH4+ concentrations (0-35 mM) were investigated in the present study. The results indicated that M. aquaticum can tolerate NH4+ concentrations of up to 30 mM for 21 days and grow well with high nutrient (N, P) uptake. A suitable concentration of NH4+ for a better growth of M. aquaticum was 0.5-20 mM. The free NH4+ content was no obviously increase at NH4+ concentration below 15 mM, indicated there was no obviously ammonium accumulation. Exogenous NH4+ inhibited K+ absorption and improved Ca2+ absorption, indicating mineral cation could mediate NH4+ homeostasis under NH4+ stress. Moreover, comparison with those in the control group, the activities of glutamine synthetase (GS), glutamate synthetase (GOGAT) in M. aquaticum increased by 52.7%-115% at 1-20 mM NH4+, and superoxide dismutase (SOD) increased by 29.2-143% at 1-35 mM NH4+. This indicated that the high NH4+ tolerance of M. aquaticum was mainly due to the balance of free NH4+ content in tissues, as well as improved nitrogen metabolism and antioxidant system. This could be attributed to the role of the GS-GOGAT cycle and SOD. In conclusion, M. aquaticum, which tolerates high NH4+ concentration and has a high N uptake ability, can be used as a good candidate specie to help develop more efficient management strategies for treating high-NH4+ wastewater in CW systems.


Assuntos
Compostos de Amônio , Saxifragales , Amônia/metabolismo , Compostos de Amônio/metabolismo , Animais , Nitrogênio/análise , Saxifragales/metabolismo , Superóxido Dismutase/metabolismo , Suínos , Águas Residuárias
3.
Mol Cell Biochem ; 449(1-2): 73-79, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29644526

RESUMO

Dyslipidemia in patients with hypercholesterolemia has been recently linked to increased human cathelicidin LL-37 (LL-37) serum concentration. We tested a hypothesis that upregulated expression of LL-37 gene in peripheral blood leucocytes is involved in dyslipidemia in patients with hypercholesteremia. Patients with hypercholesterolemia were used in the study. Expression of LL-37 and human glyceraldehyde-3-phosphate dehydrogenase in peripheral blood leucocytes were quantified by real-time RT-PCR. Serum LL-37 concentration was estimated by enzyme-linked immunosorbent assay. Serum lipid levels were assessed by absorptiometry in all cases. Patients with hypercholesterolemia as compared to control ones were characterized by (a) an up-regulation of LL-37 gene expression in peripheral blood leucocytes with parallel increase of serum LL-37 concentration and (b) an increase of serum total and low-density lipoprotein cholesterol concentrations. Patients with hypercholesterolemia after a treatment with atorvastatin calcium 20 mg daily as compared to that patients before the treatment: an down-regulation of LL-37 gene expression in peripheral blood leucocytes with parallel decrease of serum LL-37 concentration. We also found significant correlation between serum LL-37 and high-density lipoprotein cholesterol levels (r = 0.7290, P < 0.0001). The results suggest that hypercholesterolemia is associated with an increased LL-37 gene expression in peripheral blood leucocytes. The correlation between serum LL-37 and high-density lipoprotein cholesterol levels suggests that LL-37 may play a key role in regulation of cholesterol levels in hypercholesterolemia.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , HDL-Colesterol/sangue , Hipercolesterolemia/sangue , Leucócitos/metabolismo , Regulação para Cima , Adulto , Idoso , Feminino , Humanos , Hipercolesterolemia/patologia , Leucócitos/patologia , Masculino , Pessoa de Meia-Idade , Catelicidinas
4.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500045

RESUMO

The capability of biofilm formation has a major impact on the industrial and biotechnological applications of Shewanella putrefaciens CN32. However, the detailed regulatory mechanisms underlying biofilm formation in this strain remain largely unknown. In the present report, we describe a three-component regulatory system which negatively regulates the biofilm formation of S. putrefaciens CN32. This system consists of a histidine kinase LrbS (Sputcn32_0303) and two cognate response regulators, including a transcription factor, LrbA (Sputcn32_0304), and a phosphodiesterase, LrbR (Sputcn32_0305). LrbS responds to the signal of the carbon source sodium lactate and subsequently activates LrbA. The activated LrbA then promotes the expression of lrbR, the gene for the other response regulator. The bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) phosphodiesterase LrbR, containing an EAL domain, decreases the concentration of intracellular c-di-GMP, thereby negatively regulating biofilm formation. In summary, the carbon source sodium lactate acts as a signal molecule that regulates biofilm formation via a three-component regulatory system (LrbS-LrbA-LrbR) in S. putrefaciens CN32.IMPORTANCE Biofilm formation is a significant capability used by some bacteria to survive in adverse environments. Numerous environmental factors can affect biofilm formation through different signal transduction pathways. Carbon sources are critical nutrients for bacterial growth, and their concentrations and types significantly influence the biomass and structure of biofilms. However, knowledge about the underlying mechanism of biofilm formation regulation by carbon source is still limited. This work elucidates a modulation pattern of biofilm formation negatively regulated by sodium lactate as a carbon source via a three-component regulatory system in S. putrefaciens CN32, which may serve as a good example for studying how the carbon sources impact biofilm development in other bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Shewanella putrefaciens/efeitos dos fármacos , Shewanella putrefaciens/fisiologia , Lactato de Sódio/farmacologia , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Histidina Quinase/genética , Diester Fosfórico Hidrolases/genética , Shewanella putrefaciens/genética , Fatores de Transcrição/genética
5.
Glycoconj J ; 34(4): 523-535, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28389847

RESUMO

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV), which can lead to chronic liver disease and put people at high risk of death from cirrhosis of the liver and liver cancer. However, little is known about the correlation of salivary N-linked glycans related to HBV-infected liver diseases. Here we investigated N-linked glycome in saliva from 200 subjects (50 healthy volunteers (HV), 40 HBV-infected patients (HB), 50 cirrhosis patients (HC), and 60 hepatocellular carcinoma patients (HCC) using MALDI-TOF/TOF-MS. Representative MS spectra of N-glycans with signal-to-noise ratios >6 were annotated using the GlycoWorkbench program. A total of 40, 47, 29, and 33 N-glycan peaks were identified and annotated from HV, HB, HC, and HCC groups, respectively. There were 15 N-glycan peaks (e.g., m/z 1647.587, 1688.613 and 2101.755) were present in all groups. Three N-glycan peaks (m/z 2596.925, 2756.962, and 2921.031) were unique in HV group, 2 N-glycan peaks (m/z 1898.676 and 1971.692) were unique in HB group, 5 N-glycan peaks (m/z 1954.677, 2507.914, 2580.930, 2637.952, and 3092.120) were unique in HC group, and 3 N-glycan peaks (m/z 2240.830, 2507.914, and 3931.338) were unique in HCC group. The proportion of fucosylated N-glycans was apparently increased in the HCC group (84.8%) than in any other group (73.1% ± 0.01), however, the proportion of sialylated N-glycans was decreased in HCC group (12.1%) than in any other group (17.23% ± 0.003). Our data provide pivotal information to distinguish between HBV-associated hepatitis, cirrhosis and HCC, and facilitate the discovery of biomarkers for HCC during its early stages based on precise alterations of N-linked glycans in saliva.


Assuntos
Carcinoma Hepatocelular/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite Crônica/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Metaboloma , Polissacarídeos/metabolismo , Saliva/metabolismo , Adulto , Idoso , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Feminino , Glicosilação , Hepatite Crônica/virologia , Humanos , Cirrose Hepática/virologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Environ Sci (China) ; 55: 33-40, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477828

RESUMO

Airborne bacteria were measured when a dust storm passed Beijing in spring 2012 with a focus on cell concentration, viability and TSA- and R2A-cultured strain composition. The concentration varied at an order of 107cells/m3 with dust loading (demonstrated with PM10) and they had a very close correlation (RT2=0.91, p<0.01). At the time of highest PM10 of 652µg/m3, the bacterial concentration reached 1.4×108cells/m3, which was larger than that before and after the dust event by one order. Bacterial viability, the ratio of number concentration of viable cells to total cells, was 32%-64% and smaller in the dust plume than that before the dust arrival. Bacterial strains from the culture ranged between 2.5×104 and 4.6×105CFU/m3 and no correlation with PM10 was determined. Their composition was different before and after the dust arrival according to 16S rRNA gene sequences and strains belong to Actinomycetes and Firmicutes were the majority in the dust samples.


Assuntos
Microbiologia do Ar , Poluentes Atmosféricos/análise , Bactérias/classificação , Monitoramento Ambiental , Bactérias/genética , Bactérias/isolamento & purificação , Pequim , Material Particulado/análise
7.
Antonie Van Leeuwenhoek ; 108(1): 51-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25912732

RESUMO

A Gram-negative, non-motive, aerobic and non-spore-forming strain 16-28-2(T) isolated from freshwater sediment of Taihu Lake was characterized by using a polyphasic approach. The optimum growth conditions were found to be as follows: 28 °C, pH 6.5 and 0-0.5 % NaCl in YG liquid medium. The major fatty acids were identified to be summed feature 3 (consisting of C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (consisting of C18:1 ω7c and/or C18:1 ω6c), C14:0 2-OH, C17:1 ω6c, C16:0 and C18:1 ω7c 11-methyl (>5 %). Strain 16-28-2(T) was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid as the major polar lipids; and ubiquinone 10 (Q-10) as the major respiratory quinone. DNA G+C content of strain 16-28-2(T) was 63.5 mol % (Tm). A phylogenetic study of 16S rRNA gene indicated that strain 16-28-2(T) is a member of the genus Novosphingobium, with the highest 16S rRNA gene sequence similarity of 96.3 % with Novosphingobium lentum MT1(T) and below 96 % with the other Novosphingobium species. On the basis of the phylogenetic, phenotypic analyses and biochemical characterization, we suggest that strain 16-28-2(T) is a novel species in the genus Novosphingobium, for which the name Novosphingobium tardum sp. nov. is proposed. The type strain of N. tardum is 16-28-2(T) (=CGMCC 1.12989(T) =NBRC 110956(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Sphingomonadaceae/classificação , Sphingomonadaceae/isolamento & purificação , Aerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Água Doce , Glicolipídeos/análise , Concentração de Íons de Hidrogênio , Lagos , Dados de Sequência Molecular , Fosfolipídeos/análise , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/fisiologia , Temperatura
8.
World J Microbiol Biotechnol ; 31(12): 1983-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26395638

RESUMO

Stevioside is a non-caloric, natural, high-intensity sweetener. However, the bitter aftertaste of stevioside restricts its utilization for human consumption and limits its application in the food industry. In this study, a high efficiency enzymatic modification system was investigated to improve stevioside taste quality. A cyclodextrin glucanotransferase (CGTase) producing strain Paenibacillus sp. CGMCC 5316 was isolated from Stevia planting soil. With starch as glycosyl donor, this CGTase can transform stevioside into a single specific product which is an isomer of rebaudioside A and identified as mono-glycosylated stevioside. The taste of stevioside is improved noticeably by generating mono-glycosylated stevioside, which possesses a sucrose-like taste and has sweetness increased significantly by 35.4%. Next, the parameters influencing CGTase production were optimized. Compared to initial conditions, CGTase activity increased by 214.7% under optimum conditions of 3.9 g/L starch, 17.9 g/L tryptone, and 67.6 h of culture time, and the transglycosylation rate of stevioside was remarkably increased by 284.8%, reaching 85.6%. This CGTase modification system provides a promising solution for improving the sweetness and taste quality of stevioside. The efficiency of CGTase transformation can be greatly increased by optimizing the culture conditions of Paenibacillus sp. CGMCC 5316.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Paenibacillus/enzimologia , Cromatografia Líquida de Alta Pressão , Diterpenos do Tipo Caurano/química , Glucosídeos/química , Glucosiltransferases/biossíntese , Glicosilação , Espectrometria de Massas , Paenibacillus/isolamento & purificação , Paenibacillus/metabolismo , Amido/química , Amido/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo
9.
World J Microbiol Biotechnol ; 31(6): 883-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25772498

RESUMO

To investigate the temporal variation of the sediment prokaryote communities and their relation with the rapid increase of algae population in Taihu, a shallow eutrophic freshwater Lake, water and surface sediments were sampled from seven sites in different stages of algal bloom. The physicochemical characterization revealed positive correlations among the nutrient (N, P) parameters in the water and sediments, as well as TN/TP ratio 30.79 in average in water and 0.13 in sediments, demonstrating that P content was the limit factor for bloom in Taihu and sediment was an important nutrient resource for the water body. T-RFLP analysis of 16S rRNA genes revealed a diversity decrease of sediment prokaryotic communities along the bloom. The bacterial communities in sediments were more sensitive and shaped by the temporal changes, while archaea were more sensitive to the trophic level. The pyrosequencing data showed clear spatial and temporal changes in diversity of sediment bacteria. Betaproteobacteria was the most abundant group in all the samples, following by Delta-, Gama- and Alpha-proteobacteria, Acidobacteria, Chlorobi, Chloroflexi etc. At the genus level, Thiobacillus and Sulfuricurvum were the most dominant groups in the sediments, and the increase of Thiobacillus abundance in February might be used as bioindicator for the subsequent bloom. In addition, NO3 (-)-N was evidenced to be the main factor to regulate the bacterial community structure in the sediments. These results offered some novel and important data for the evaluation and predict the algal bloom in Taihu and can be reference for other shallow fresh water lakes.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Lagos , Archaea/genética , Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eutrofização , Água Doce/química , Dados de Sequência Molecular , Nitrogênio/análise , Fósforo/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Appl Microbiol Biotechnol ; 98(5): 2309-19, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23989975

RESUMO

Soils were incubated continuously in an atmosphere of (14)CO2 and the distribution of labeled C into soil organic carbon ((14)C-SOC) was determined at 0-1, 1-5, and 5-17 cm down the profile. Significant amounts of (14)C-SOC were measured in paddy soils with a mean of 1,180.6 ± 105.2 mg kg(-1) at 0-1 cm and 135.3 ± 47.1 mg kg(-1) at 1-5 cm. This accounted for 5.9 ± 0.7% and 0.7 ± 0.2%, respectively, of the total soil organic carbon at these depths. In the upland soils, the mean (14)C-SOC concentrations were 43 times (0-1 cm) and 11 times (1-5 cm) lower, respectively, than those in the paddy soils. The amounts of (14)C incorporated into the microbial biomass (MBC) were also much lower in upland soils (5.0 ± 3.6% and 2.9 ± 1.9% at 0-1 and 1-5 cm, respectively) than in paddy soils (34.1 ± 12.4% and 10.2 ± 2.1% at 0-1 and 1-5 cm, respectively). Similarly, the amount of (14)C incorporated into the dissolved organic carbon (DOC) was considerably higher in paddy soils (26.1 ± 6.9% and 6.9 ± 1.3% at 0-1 and 1-5 cm, respectively) than in upland soils (6.0 ± 2.7% and 4.3 ± 2.2%, respectively). The observation that the majority of the fixed (14)C-SOC, RubisCO activity and cbbL gene abundance were concentrated at 0-1 cm depth and the fact that light is restricted to the top few millimeters of the soil profiles highlighted the importance of phototrophs in CO2 fixation in surface soils. Phylogenetic analysis of the cbbL genes showed that the potential for CO2 fixation was evident throughout the profile and distributed between both photoautotrophic and chemoautotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, Rubrivivax gelatinosus and Ralstonia eutropha.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Dióxido de Carbono/metabolismo , Microbiologia do Solo , Radioisótopos de Carbono/metabolismo , Marcação por Isótopo , Dados de Sequência Molecular , Análise de Sequência de DNA
11.
Medicine (Baltimore) ; 103(7): e37271, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363900

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NASH) is one of the primary causes of chronic liver disease worldwide. Obeticholic acid (OCA), a potent farnesoid X nuclear receptor activator, has shown promise for treating NASH-related fibrosis due to its anti-fibrotic effects. This study aimed to examine the efficacy of OCA for patients with NASH as well as to investigate its impact on dyslipidemia. METHOD: A search of databases including PubMed, Embase, and Cochrane Library from January 1, 2010, to November 1, 2022, was conducted to identify systematic reviews of randomized controlled trials involving NASH patients. Inclusion criteria comprised randomized controlled trials that specifically addressed NASH as diagnosed through magnetic resonance imaging, computed tomography, or histology. The results were then categorized, with consideration given to both biochemical and histological outcomes. RESULT: Five NASH studies were ultimately selected for further analysis. In terms of biochemical indicators, patients receiving OCA treatment showed improvements in alanine transaminase (mean difference: -19.48, 95% confidence interval [CI]: -24.39 to 14.58; P < .05) and aspartate aminotransferase (mean difference: -9.22, 95% CI: -12.70 to 5.74; P < .05). As for histological improvement, OCA treatment reduced fibrosis (odds ratio [OR]: 1.95, 95% CI: 1.47-2.59; P = .001) and steatosis (OR: 1.95, 95% CI: 1.47-2.59; P = .001). No significant differences were observed regarding adverse events (1.44, 95% CI: 0.57-3.62; P > .001). Regarding dyslipidemia, mean differences between total cholesterol and low-density lipoprotein were found to be high (0.33, 95% CI: 0.01-0.64, P < .05; 0.39, 95% CI: 0.04-0.73, P < .05). In the case of pruritus, OCA achieved a high OR (3.22, 95% CI: 2.22-4.74) compared with placebo. CONCLUSION: OCA also reduced several liver test markers compared to placebo, including the biochemical indicators alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase, and improved hepatocellular ballooning, fibrosis, steatosis, and lobular inflammation. Although the incidence of adverse events did not significantly differ between OCA and placebo groups among NASH patients, OCA treatment was found to elevate total cholesterol and low-density lipoprotein levels, and the reported severity of pruritus increased with higher doses of OCA.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Dislipidemias , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Alanina Transaminase , Ensaios Clínicos Controlados Aleatórios como Assunto , Ácido Quenodesoxicólico/efeitos adversos , Fibrose , Lipoproteínas LDL , Dislipidemias/tratamento farmacológico , Prurido/tratamento farmacológico , Aspartato Aminotransferases , Colesterol
12.
PeerJ ; 12: e17082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529307

RESUMO

Background: Peroxisome proliferator-activated receptors (PPARs) exert multiple functions in the initiation and progression of stomach adenocarcinomas (STAD). This study analyzed the relationship between PPARs and the immune status, molecular mutations, and drug therapy in STAD. Methods: The expression profiles of three PPAR genes (PPARA, PPARD and PPARG) were downloaded from The Cancer Genome Atlas (TCGA) dataset to analyze their expression patterns across pan-cancer. The associations between PPARs and clinicopathologic features, prognosis, tumor microenvironment, genome mutation and drug sensitivity were also explored. Co-expression between two PPAR genes was calculated using Pearson analysis. Regulatory pathways of PPARs were scored using gene set variation analysis (GSVA) package. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, Cell Counting Kit-8 (CCK-8) assay and transwell assay were conducted to analyze the expression and function of the PPAR genes in STAD cell lines (AGS and SGC7901 cells). Results: PPARA, PPARD and PPARG were more abnormally expressed in STAD samples and cell lines when compared to most of 32 type cancers in TCGA. In STAD, the expression of PPARD was higher in Grade 3+4 and male patients, while that of PPARG was higher in patient with Grade 3+4 and age > 60. Patients in high-PPARA expression group tended to have longer survival time. Co-expression analysis revealed 6 genes significantly correlated with the three PPAR genes in STAD. Single-sample GSEA (ssGSEA) showed that the three PPAR genes were enriched in 23 pathways, including MITOTIC_SPINDLE, MYC_TARGETS_V1, E2F_TARGETS and were closely correlated with immune cells, including NK_cells_resting, T_cells_CD4_memory_resting, and macrophages_M0. Immune checkpoint genes (CD274, SIGLEC15) were abnormally expressed between high-PPAR expression and low-PPAR expression groups. TTN, MUC16, FAT2 and ANK3 genes had a high mutation frequency in both high-PPARA/PPARG and low-PPARA/PPARG expression group. Fourteen and two PPARA/PPARD drugs were identified to be able to effectively treat patients in high-PPARA/PPARG and low-PPARA/PPARG expression groups, respectively. We also found that the chemotherapy drug Vinorelbine was positively correlated with the three PPAR genes, showing the potential of Vinorelbine to serve as a treatment drug for STAD. Furthermore, cell experiments demonstrated that PPARG had higher expression in AGS and SGC7901 cells, and that inhibiting PPARG suppressed the viability, migration and invasion of AGS and SGC7901 cells. Conclusions: The current results confirmed that the three PPAR genes (PPARA, PPARD and PPARG) affected STAD development through mediating immune microenvironment and genome mutation.


Assuntos
Adenocarcinoma , PPAR delta , Humanos , Masculino , PPAR gama/genética , Vinorelbina , PPAR alfa/genética , PPAR delta/genética , Adenocarcinoma/tratamento farmacológico , Resistência a Medicamentos , Estômago , Microambiente Tumoral/genética
13.
J Colloid Interface Sci ; 629(Pt B): 1015-1026, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208602

RESUMO

Regulating electronic structure and enriching active sites of photocatalysts are effective strategies to promote hydrogen evolution. Herein, a unique NixCd1-xS-Ni0 photocatalyst, including the surface nickel (Ni) doping and atomic Ni0 anchoring sites, is successfully prepared by Ni2+ ions exchange reaction (Ni2++ CdS â†’ NixCd1-xS) and in-situ photo-induction of Ni0(Ni2++NixCd1-xS→hνNixCd1-xS-Ni0), respectively. As to Ni doping, the Ni replaced cadmium (Cd) atoms introduce hybridized states around the Fermi level, modulating the electronic structure of adjacent S atoms and optimizing the photocatalytic activity of sulfur (S) atoms. Besides, photogenerated Ni0 atoms, anchored on unsaturated S atoms, act as charge transfer bridges to reduce Ni2+ ions in the solution to Ni clusters (NixCd1-xS-Ni0→ne-NixCd1-xS-Ni). Subsequently, the displacement reaction of Ni clusters with protons (H+) spontaneously proceeds to produce hydrogen (H2) in an acidic solution (NixCd1-xS-Ni→2H+H2↑+Ni2++NixCd1-xS-Ni0). The equilibrium of photo-deposition/dissolution of Ni clusters realizes the construction of dynamic active sites, providing sustainable reaction centers and enhancing surface redox kinetics. The NixCd1-xS-Ni0 exhibits a high hydrogen evolution rate of 428 mmol·h-1·g-1 with a quantum efficiency of 75.6 % at 420 nm. This work provides the optimal S electronic structure for photocatalytic H2 evolution and constructs dynamic Ni clusters for chemical replacement reaction. This work provides the optimal S electronic structure for photocatalytic H2 evolution and constructs dynamic Ni clusters for displacement reaction, opening a dual pathway for efficient water reduction.

14.
J Colloid Interface Sci ; 634: 563-574, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549205

RESUMO

Accelerating charge transfer efficiency by constructing heterogeneous interfaces on metal-based substrates is an effective way to improve the electrocatalytic performance of materials. However, minimizing the substrate-catalyst interfacial resistance to maximize catalytic activity remains a challenge. This study reports a simple interface engineering strategy for constructing Mo-Ni9S8/Ni3S2 heterostructured nanoflowers. Experimental and theoretical investigations reveal that the primary role assumed by Ni3S2 in Mo-Ni9S8/Ni3S2 heterostructure is to replace nickel foam (NF) substrate for electron conduction, and Ni3S2 has a lower potential energy barrier (0.76 to 1.11 eV) than NF (1.87 eV), resulting in a more effortless electron transfer. The interface between Ni3S2 and Mo-Ni9S8 effectively regulates electron redistribution, and when the electrons from Ni3S2 are transferred to Mo-Ni9S8, the potential energy barriers at the heterogeneous interface are 1.06 eV, lower than that between NF and Ni3S2 (1.53 eV). Mo-Ni9S8/Ni3S2-0.1 exhibited excellent oxygen evolution reaction (OER)/hydrogen evolution reaction (HER) bifunctional catalytic activity in 1 M KOH, with overpotentials of only 223 mV@100 mA cm-2 for OER and 116 mV@10 mA cm-2 for HER. Moreover, when combined with an alkaline electrolytic cell, it required only an ultra-low cell voltage of 1.51 V to drive a current density of 10 mA cm-2. This work provides new inspirations for rationally designing interface engineering for advanced catalytic materials.


Assuntos
Eletrólise , Elétrons , Transporte de Elétrons , Catálise , Hidrogênio , Níquel , Oxigênio
15.
Appl Microbiol Biotechnol ; 93(6): 2581-90, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22075634

RESUMO

In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, (13)C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer.


Assuntos
Bactérias/metabolismo , Minerais/metabolismo , Álcalis/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Carvão Mineral/análise , Substâncias Húmicas/análise , Minerais/análise , Dados de Sequência Molecular , Filogenia , Microbiologia do Solo
16.
Micromachines (Basel) ; 13(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35457807

RESUMO

This work simulates the plowing process of a single asperity GaAs by diamond indenter using molecular dynamics simulations. The deformation mechanism of asperity GaAs is revealed by examining the topography evolution and stress state during the plowing. This work also investigates the origin of the influence of asperity size, indenter radius and plow depth on the deformation of the asperity GaAs. We observed the initiation and propagation of cracks up to the onset of fracture and the plastic activity near the indenter, obtaining more information usually not available from planar GaAs in normal velocity plowing compared to just plastic activity. The simulations demonstrated the direct evidence of cracking in GaAs induced by plowing at an atomic level and probed the origin and extension of cracking in asperity GaAs. This finding suggests that cracking appears to be a new deformation pattern of GaAs in plowing, together with dislocation-dominated plasticity modes dominating the plowing deformation process. This work offers new insights into understanding the deformation mechanism of an asperity GaAs. It aims to find scientific clues for understanding plastic removal performed in the presence of cracking.

17.
Sci Total Environ ; 807(Pt 1): 150684, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610395

RESUMO

The accumulation rate, fractions, and sorption capacity of phosphorus in sediments determine the removal efficiency and service life of constructed wetlands (CWs). Nine pilot-scale three-stage surface flow CWs were constructed to treat three loading rates of lagoon-pretreated swine wastewater, and surface sediment samples at initial and one-year treatment were collected to analyze the phosphorus fractions and sorption capacity. After one-year treatment, concentration of total phosphorus (TP) in sediments increased for high loading rates of wastewater, but remained stable for low loading rates. The annual accumulation rate of TP in sediments (Ma) was -43-445 mg kg-1 yr-1 at surface loading rate (SLR) of 36-355 g P m-2 yr-1. Their association could be described well using a sigmoid model, i.e., Ma = -23 + 538/(1 + exp.(-(SLR-262)/48)) (R2adj = 0.897, RMSE = 40.8, p < 0.01), indicating that the phosphorus accumulation rates in sediments were loading rate-dependent. The sum of inorganic phosphorus fractions contributed to 80-100% of the TP concentration, and accumulation of aluminum-bound phosphorus (AlP) and iron-bound phosphorus (FeP) was responsible for variability of TP concentration in sediments. Phosphorus sorption capacity of CW1 sediments increased by 1.3-1.8 times, attributed to increased pH, and concentrations of ammonium oxalate-extractable aluminum and iron in sediments due to the wastewater input. Selecting iron and aluminum-rich materials preferentially as substrates and regulating the ratio of metal ions to phosphorus in wastewater should be alternative enhancement strategies of CWs for phosphorus removal.


Assuntos
Purificação da Água , Áreas Alagadas , Animais , Fósforo , Suínos , Eliminação de Resíduos Líquidos , Águas Residuárias
18.
Sci Total Environ ; 848: 157596, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35905951

RESUMO

High-strength ammonium (NH4+), the main characteristic of swine wastewater, poses a significant threat to the rural ecological environment. As a novel phytoremediation technology, Myriophyllum aquaticum wetlands have high tolerance and removal rate of NH4+. Glutamine synthetase (GS), a pivotal enzyme in nitrogen (N) metabolism, is hypothesized to play an important role in the tolerance of M. aquaticum to high NH4+. Herein, the responses of M. aquaticum to GS inhibition by 0.1 mM methionine sulfoximine (MSX) under 15 mM NH4+ were investigated. After 5 days, visible NH4+ toxicity symptoms were observed in MSX-treated plants. Compared with the control, the NH4+ accumulation in the leaves increased by 20.99 times, while that of stems and roots increased by 3.27 times and 47.76 %, suggesting that GS inhibition had a greater impact on the leaves. GS inhibition decreased pigments in the leaves by 8.64 %-41.06 %, triggered oxidative stress, and affected ions concentrations in M. aquaticum. The concentrations of glutamine (Gln) and asparagine decreased by 63.46 %-97.43 % and 12.37 %-76.41 %, respectively, while the concentrations of most other amino acids increased after 5 days of MSX treatment, showing that GS inhibition reprogrammed the amino acids synthesis. A decrease in Gln explains the regulations of N-related genes, including increased expression of AMT in roots and decreased expression of GS, GOGAT, GDH, and AS, which would cause further NH4+ accumulation via promoting NH4+ uptake and decreasing NH4+ assimilation in M. aquaticum. This study revealed for the first time that GS inhibition under high NH4+ condition can lead to phytotoxicity in M. aquaticum due to NH4+ accumulation. The physiological and molecular responses of the leaves, stems, and roots confirmed the importance of GS in the high NH4+ tolerance of M. aquaticum. These findings provide new insights into NH4+ tolerance mechanisms in M. aquaticum and a theoretical foundation for the phytoremediation of high NH4+-loaded swine wastewater.


Assuntos
Compostos de Amônio , Saxifragales , Compostos de Amônio/metabolismo , Animais , Asparagina/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Metionina Sulfoximina/metabolismo , Nitrogênio/análise , Suínos , Águas Residuárias/química
19.
Int J Biol Macromol ; 209(Pt A): 1368-1378, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461868

RESUMO

Microbiota in the oral cavity plays an important role in maintaining human health. Our previous studies have revealed significant alterations of salivary glycopatterns in gastric cancer (GC) patients, but it is unclear whether these altered salivary glycopatterns can cause the dysbiosis of oral microbiota. In this study, the oral microbiome of healthy volunteers (HVs) and GC patients were detected. The neoglycoproteins were then synthesized according to the altered glycopatterns in GC patients and used to explore the effects of specific salivary glycopattern against oral microbiota. The results showed that five species were significantly increased (p < 0.05) while two species were significantly decreased (p < 0.01) in the saliva of GC patients compared with that of HVs. And the fucose-neoglycoproteins (30-100 µg/mL) could reduce the adhesion and toxicity of Aggregatibacter segnis (A. segnis) to oral cells (HOEC and CAL-27), change the glycan structures of lipopolysaccharide on the surface of A. segnis, and enhance the capacity of A. segnis to trigger innate immune responses. This study revealed that the changes of salivary protein glycopatterns in GC patients might contribute to the dysbiosis of oral microbiota, and had important implications in developing new carbohydrate drugs to maintain a balanced microbiota in the oral.


Assuntos
Microbiota , Neoplasias Gástricas , Disbiose/metabolismo , Glicoproteínas/metabolismo , Humanos , RNA Ribossômico 16S/metabolismo , Saliva/metabolismo , Proteínas e Peptídeos Salivares , Neoplasias Gástricas/metabolismo
20.
J Exp Bot ; 62(7): 2319-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21220781

RESUMO

The high affinity nitrate transport system (HATS) plays an important role in rice nitrogen acquisition because, even under flooded anaerobic cultivation when NH(4)(+) dominates, significant nitrification occurs on the root surface. In the rice genome, four NRT2 and two NAR2 genes encoding HATS components have been identified. One gene OsNRT2.3 was mRNA spliced into OsNRT2.3a and OsNRT2.3b and OsNAR2.1 interacts with OsNRT2.1/2.2 and OsNRT2.3a to provide nitrate uptake. Using promoter-GUS reporter plants and semi-quantitative RT-PCR analyses, it was observed that OsNAR2.1 was expressed mainly in the root epidermal cells, differently from the five OsNRT2 genes. OsNAR2.1, OsNRT2.1, OsNRT2.2, and OsNRT2.3a were up-regulated by nitrate and suppressed by NH(4)(+) and high root temperature (37 °C). Expression of all these genes was increased by light or external sugar supply. Root transcripts of OsNRT2.3b and OsNRT2.4 were much less abundant and not affected by temperature. Expression of OsNRT2.3b was insensitive to the form of N supply. Expression of OsNRT2.4 responded to changes in auxin supply unlike all the other NRT2 genes. A region from position -311 to -1, relative to the translation start site in the promoter region of OsNAR2.1, was found to contain the cis-element(s) necessary for the nitrate-, but not light- and sugar-dependent activation. However, it was difficult to define a conserved cis-element in the promoters of the nitrate-regulated OsNRT2/OsNAR2 genes. The results imply distinct physiological functions for each OsNRT2 transporter, and differential regulation pathways by N and C status.


Assuntos
Proteínas de Transporte de Ânions/genética , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA