Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 6432-6445, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439346

RESUMO

In this paper, a liquid crystal (LC) tunable origami metastructure (OMS) designed for curvature sensing on cylindrical surfaces to measure their curvature is introduced. The LC employed is K15 (5CB) and the applicable band is 0.36∼23 GHz. When excited by electromagnetic waves (EMWs) within the 4∼16 GHz, the resonance frequency of the OMS shifts from 10.24 GHz to 10.144 GHz, corresponding to a change in absorption amplitude ranging from 0.773 to 0.920. In terms of curvature sensing, the detectable range of curvature spans from 0 to 0.327 mm-1. The maximum sensitivity (S) achieved for curvature measurement reaches 0.918/mm-1, accompanied by a quality factor (Q-factor) of 25.88. The proposed OMS embodies numerous excellent traits, including wide-range sensing capabilities and heightened S, promising for applications in bionic skin, smart robotics, and related fields.

2.
Opt Express ; 32(9): 15827-15839, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859223

RESUMO

To advance the development of a compact and highly integrated fiber Bragg grating (FBG) interrogation system, to the best of our knowledge, this paper is the first to present the design and fabrication of a monolithic integration chip based on silicon-on-insulator (SOI), which is specifically intended for application in fiber grating sensing interrogation systems. By considering the impact of coupling structure dimensions on coupling efficiency as well as the effect of the photodetector (PD) parameters on the optical absorption efficiency of the device, we refine the structure of the monolithic integrated chip for arrayed waveguide grating (AWG) and PD. The test results reveal that the coupling loss between AWG and PD is -2.4 dB. The monolithic integrated interrogation chip achieves an interrogation accuracy of approximately 6.79 pm within a dynamic range of 1.56 nm, accompanied by a wavelength resolution of 1 pm. This exceptional performance highlights the potential of the monolithic integrated chip to enhance the integration of AWG-based fiber grating interrogation systems.

3.
Opt Lett ; 49(3): 454-457, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300029

RESUMO

Compact fiber Bragg grating (FBG) interrogator is a widely investigated topic in the field of fiber optic sensing. Here we report a dense spectral arrayed waveguide grating (AWG) chip designed for FBG interrogation. By integrating a multimode interference (MMI) coupler with the AWG, bilateral input phase-differential optical signals were achieved at the input port of the AWG. This chip effectively doubles the output channel count without altering the device footprint, while concurrently reducing the channel spacing without modifying the bandwidth and spectral slope of the output spectrum. We further optimized the method for selecting interrogation channels. The results demonstrate that the dynamic range of the interrogation reaches 13.5 nm with an absolute wavelength resolution of 4 pm and an absolute accuracy better than 20 pm.

4.
Phys Rev Lett ; 132(15): 158102, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682980

RESUMO

Electrophoresis is the motion of particles relative to a surrounding fluid driven by a uniform electric field. In conventional electrophoresis, the electrophoretic velocity grows linearly with the applied field. Nonlinear effects with a quadratic speed vs field dependence are gaining research interest since an alternating current field could drive them. Here, we report on the giant nonlinearity of electrophoresis in a nematic liquid crystal in which the speed grows with the fourth and sixth powers of the electric field. The mechanism is attributed to the shear thinning of the nematic environment induced by the moving colloid. The observed giant nonlinear effect dramatically enhances the efficiency of electrophoretic transport.

5.
Sci Technol Adv Mater ; 25(1): 2311635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361533

RESUMO

The rapid advancement in intelligent bionics has elevated electronic skin to a pivotal component in bionic robots, enabling swift responses to diverse external stimuli. Combining wearable touch sensors with IoT technology lays the groundwork for achieving the versatile functionality of electronic skin. However, most current touch sensors rely on capacitive layer deformations induced by pressure, leading to changes in capacitance values. Unfortunately, sensors of this kind often face limitations in practical applications due to their uniform sensing capabilities. This study presents a novel approach by incorporating graphitic carbon nitride (GCN) into polydimethylsiloxane (PDMS) at a low concentration. Surprisingly, this blend of materials with higher dielectric constants yields composite films with lower dielectric constants, contrary to expectations. Unlike traditional capacitive sensors, our non-contact touch sensors exploit electric field interference between the object and the sensor's edge, with enhanced effects from the low dielectric constant GCN/PDMS film. Consequently, we have fabricated touch sensor grids using an array configuration of dispensing printing techniques, facilitating fast response and ultra-low-limit contact detection with finger-to-device distances ranging from 5 to 100 mm. These sensors exhibit excellent resolution in recognizing 3D object shapes and accurately detecting positional motion. Moreover, they enable real-time monitoring of array data with signal transmission over a 4G network. In summary, our proposed approach for fabricating low dielectric constant thin films, as employed in non-contact touch sensors, opens new avenues for advancing electronic skin technology.


We've created 3D recognition sensing arrays using a printed method, enabling remote data transmission. We've identified an intriguing interfacial effect in GCN/PDMS doping, opening new possibilities in smart skin technology.

6.
Angew Chem Int Ed Engl ; 63(11): e202319698, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38190301

RESUMO

Liquid crystal elastomers (LCEs) are stimulus-responsive materials with intrinsic anisotropy. However, it is still challenging to in situ program the mesogen alignment to realize three-dimensional (3D) deformations with high-resolution patterned structures. This work presents a feasible strategy to program the anisotropy of LCEs by using chalcone mesogens that can undergo a photoinduced cycloaddition reaction under linear polarized light. It is shown that by controlling the polarization director and the irradiation region, patterned alignment distribution in a freestanding LCE film can be created, which leads to complex and reversible 3D shape-morphing behaviors. The work demonstrates an in situ light-writing method to achieve sophisticated topography changes in LCEs, which has potential applications in encryption, sensors, and beyond.

7.
Angew Chem Int Ed Engl ; 63(12): e202319536, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38265637

RESUMO

Achieving circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with a high luminescent dissymmetry factor (glum ) is crucial for diverse optoelectronic applications. In particular, dynamically controlling the dissymmetry factor of CP-OURTP can profoundly advance these applications, but it is still unprecedented. This study introduces an effective strategy to achieve photoirradiation-driven chirality regulation in a bilayered structure film, which consists of a layer of soft helical superstructure incorporated with a light-driven molecular motor and a layer of room-temperature phosphorescent (RTP) polymer. The prepared bilayered film exhibits CP-OURTP with an emission lifetime of 805 ms and a glum value up to 1.38. Remarkably, the glum value of the resulting CP-OURTP film can be reversibly controlled between 0.6 and 1.38 over 20 cycles by light irradiation, representing the first example of dynamically controlling the glum in CP-OURTP.

8.
Phys Chem Chem Phys ; 25(16): 11375-11386, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013849

RESUMO

The anapole mode, in which a distinct radiationless electromagnetic (EM) response in artificial media can be achieved, has attracted significant attention and been regarded as a promising candidate to initiate novel avenues to control the intrinsic radiative losses in nanophotonics and plasmonics, whose current research studies mainly focus on the manipulation of the one-directional incident wave. To exploit the propagation characteristic of incident waves in anapole-excited (AE) media, a set of terahertz (THz) multifunctional Janus metastructures (JMSs) for the opposite linear-polarized (LP) light excitation is presented in this paper. By introducing the directional-selective spoof surface plasmon polariton (SSPP) excited by anapole mode, a metastructure rasorber (MSR) possessing an absorption band of 2-3.08 THz (42.5%) and a co-polarized transmission window of 3.77-5.55 THz (38.2%) for the forward normal-incident LP wave is attained. Furthermore, the integration of the MSR and a polarization-conversation structure (PCS) can be used to fabricate a multifunctional Janus metadevice thus achieving the integration of EM energy harvesting, the co-polarized transmission, and cross-polarized reflection of light with opposite propagation directions, i.e., an absorption band of 2.14-3.09 THz (36.3%) for the forward normal-incident LP wave, and a cross-polarized reflection band of 2.08-3.03 THz (37.2%) for the backward vertical-incident LP wave, while attaining an identical co-polarized transmission window of 3.95-5.2 THz (27.3%). Moreover, by utilizing the substantial field-localization properties of anapole modes supported by the nested opposite-directional SSPP with different sizes, the Janus metastructure absorber (JMA) can achieve non-overlapped absorption bands of 2.02-2.84 THz (33.7%) and 2.88-4.58 THz (45.6%) for the bidirectional normal-incident LP waves, respectively. A series of passive JMSs based on the anapole modes excited by the opposite-directional incident waves significantly extend the theoretical framework and application field of multipole electrodynamics, especially aimed at directional-selective management.

9.
Small ; 18(19): e2107413, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182018

RESUMO

The charged species inside biofluids (blood, interstitial fluid, sweat, saliva, urine, etc.) can reflect the human body's physiological conditions and thus be adopted to diagnose various diseases early. Among all personalized health management applications, ion-selective organic electrochemical transistors (IS-OECTs) have shown tremendous potential in point-of-care testing of biofluids due to low cost, ease of fabrication, high signal amplification, and low detection limit. Moreover, IS-OECTs exhibit excellent flexibility and biocompatibility that enable their application in wearable bioelectronics for continuous health monitoring. In this review, the working principle of IS-OECTs and the recent studies of IS-OECTs for performance improvement are reviewed. Specifically, contemporary studies on material design and device optimization to enhance the sensitivity of IS-OECTs are discussed. In addition, the progress toward the commercialization of IS-OECTs is highlighted, and the recently proposed solutions or alternatives are summarized. The main challenges and perspectives for fully exploiting IS-OECTs toward future preventive and personal medical devices are addressed.


Assuntos
Técnicas Biossensoriais , Líquidos Corporais , Humanos , Íons , Suor , Transistores Eletrônicos
10.
Opt Lett ; 47(23): 6065-6068, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219173

RESUMO

A non-reciprocity sensor based on a layered structure with multitasking is proposed, which realizes biological detection and angle sensing. Through an asymmetrical arrangement of different dielectrics, the sensor obtains non-reciprocity on the forward and backward scales, thus achieving multi-scale sensing in different measurement ranges. The structure sets the analysis layer. Injecting the analyte into the analysis layers by locating the peak value of the photonic spin Hall effect (PSHE) displacement, cancer cells can accurately be distinguished from normal cells via refractive index (RI) detection on the forward scale. The measurement range is 1.569∼1.662, and the sensitivity (S) is 2.97 × 10-2 m/RIU. On the backward scale, the sensor is able to detect glucose solution with 0∼400 g/L concentrations (RI = 1.3323∼1.38), with S = 1.16 × 10-3 m/RIU. When the analysis layers are filled with air, high-precision angle sensing can be achieved in the terahertz range by locating the incident angle of the PSHE displacement peak; 30°âˆ¼45°, and 50°âˆ¼65° are the detection ranges, and the highest S can reach 0.032 THz/°. This sensor contributes to detecting cancer cells and biomedical blood glucose and offers a new way to the angle sensing.

11.
Cancer Cell Int ; 21(1): 279, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039348

RESUMO

BACKGROUND: Bortezomib (BTZ) is an inhibitor of the proteasome that has been used to treat patients with mantle cell lymphoma (MCL), but the resistance to BTZ in clinical cases remains a major drawback. BACH2 is a lymphoid-specific transcription repressor recognized as a tumor suppressor in MCL. Reduced BACH2 levels contribute to BTZ resistance; however, the molecular events underlying BACH2-mediated BTZ resistance are largely unclear. METHODS: We silenced BACH2 in MCL cells using a lentiviral shRNA-mediated knockdown system. Bioinformatic, real-time RT-PCR, immunoblotting and a series of functional assays were performed to describe the molecular mechanisms underlying BTZ resistance in MCL. The therapeutic effects of chemicals were evaluated on numerous cellular and molecular processes in resistant MCL cell lines and xenografts. RESULTS: In resistant cells, BTZ-triggered mild oxidative stress induced a strong activation of PI3K-AKT signaling, which further blocked nuclear translocation of BACH2. Defective nuclear translocation of BACH2 or silencing BACH2 removed its transcriptional repression on HMOX1, leading to upregulation of heme oxygenase-1 (HO-1). Increased HO-1 further maintained reactive oxygen species (ROS) within a minimal tumor-promoting level and enhanced cytoprotective autophagy. Interestingly, although mild increase in ROS exhibited a pro-tumorigenic effect on resistant cells, simply blocking ROS by antioxidants did not lead to cell death but aggravated BTZ resistance via stabilizing BACH1, the other member of BACH family. Instead, 3-methyladenine (3-MA), a dual inhibitor to suppress PI3K signaling and autophagosome formation, sensitized resistant MCL cells to BTZ, both in vitro and in vivo. CONCLUSION: Our results dissected the interconnected molecular network in resistant MCL cells in which 3-MA represents an effective therapeutic strategy to overcome BTZ resistance. Notably, BACH1 and BACH2, albeit from the same family, are likely to play opposite roles in pathogenesis and progression of MCL.

12.
Soft Matter ; 17(21): 5444, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008664

RESUMO

Correction for 'Shear-induced polydomain structures of nematic lyotropic chromonic liquid crystal disodium cromoglycate' by Hend Baza et al., Soft Matter, 2020, 16, 8565-8576.

13.
Soft Matter ; 16(37): 8565-8576, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32785364

RESUMO

Lyotropic chromonic liquid crystals (LCLCs) represent aqueous dispersions of organic disk-like molecules that form cylindrical aggregates. Despite the growing interest in these materials, their flow behavior is poorly understood. Here, we explore the effect of shear on dynamic structures of the nematic LCLC, formed by 14 wt% water dispersion of disodium cromoglycate (DSCG). We employ in situ polarizing optical microscopy (POM) and small-angle and wide-angle X-ray scattering (SAXS/WAXS) to obtain independent and complementary information on the director structures over a wide range of shear rates. The DSCG nematic shows a shear-thinning behavior with two shear-thinning regions (Region I at [small gamma, Greek, dot above] < 1 s-1 and Region III at [small gamma, Greek, dot above] > 10 s-1) separated by a pseudo-Newtonian Region II (1 s-1 < [small gamma, Greek, dot above] < 10 s-1). The material is of a tumbling type. In Region I, [small gamma, Greek, dot above] < 1 s-1, the director realigns along the vorticity axis. An increase of [small gamma, Greek, dot above] above 1 s-1 triggers nucleation of disclination loops. The disclinations introduce patches of the director that deviates from the vorticity direction and form a polydomain texture. Extension of the domains along the flow and along the vorticity direction decreases with the increase of the shear rate to 10 s-1. Above 10 s-1, the domains begin to elongate along the flow. At [small gamma, Greek, dot above] > 100 s-1, the texture evolves into periodic stripes in which the director is predominantly along the flow with left and right tilts. The period of stripes decreases with an increase of [small gamma, Greek, dot above]. The shear-induced transformations are explained by the balance of the elastic and viscous energies. In particular, nucleation of disclinations is associated with an increase of the elastic energy at the walls separating nonsingular domains with different director tilts. The uncovered shear-induced structural effects would be of importance in the further development of LCLC applications.

14.
Arch Virol ; 165(8): 1777-1789, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462286

RESUMO

Enterovirus D68 (EV-D68) infection may cause severe respiratory system manifestations in pediatric populations. Because of the lack of an effective preventive vaccine or specific therapeutic drug for this infection, the development of EV-D68-specific vaccines and antibodies has become increasingly important. In this study, we prepared an experimental EV-D68 vaccine inactivated by formaldehyde and found that the serum of rhesus macaques immunized with the inactivated EV-D68 vaccine exhibited potent neutralizing activity against EV-D68 virus in vitro. Subsequently, the antibody-mediated immune response of B cells elicited by the inactivated vaccine was evaluated in a rhesus monkey model. The binding activity, in vitro neutralization activity, and sequence properties of 28 paired antibodies from the rhesus macaques' EV-D68-specific single memory B cells were analyzed, and the EV-D68 VP1-specific antibody group was found to be the main constituent in vivo. Intriguingly, we also found a synergistic effect among the E15, E18 and E20 monoclonal antibodies from the rhesus macaques. Furthermore, we demonstrated the protective efficacy of maternal antibodies in suckling C57BL/6 mice. This study provides valuable information for the future development of EV-D68 vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Infecções por Enterovirus/imunologia , Enterovirus/imunologia , Macaca mulatta/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Linfócitos B/virologia , Linhagem Celular , Chlorocebus aethiops/imunologia , Chlorocebus aethiops/virologia , Infecções por Enterovirus/virologia , Feminino , Células HEK293 , Humanos , Imunização/métodos , Macaca mulatta/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Vacinação/métodos , Células Vero
15.
J Immunol ; 201(9): 2557-2569, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282753

RESUMO

Enterovirus D68 (EV-D68) belongs to the picornavirus family and was first isolated in CA, USA, in 1962. EV-D68 can cause severe cranial nerve system damage such as flaccid paralysis and acute respiratory diseases such as pneumonia. There are currently no efficient therapeutic methods or effective prophylactics. In this study, we isolated the mAb A6-1 from an EV-D68-infected rhesus macaque (Macaca mulatta) and found that the Ab provided effective protection in EV-D68 intranasally infected suckling mice. We observed that A6-1 bound to the DE loop of EV-D68 VP1 and interfered with the interaction between the EV-D68 virus and α2,6-linked sialic acids of the host cell. The production of A6-1 and its Ab properties present a bridging study for EV-D68 vaccine design and provide a tool for analyzing the process by which Abs can inhibit EV-D68 infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/imunologia , Infecções por Enterovirus/prevenção & controle , Enterovirus/imunologia , Vacinas Virais/imunologia , Sequência de Aminoácidos/genética , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Proteínas do Capsídeo/genética , Enterovirus Humano D , Infecções por Enterovirus/imunologia , Feminino , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Siálicos/metabolismo , Ligação Viral
16.
Angew Chem Int Ed Engl ; 59(7): 2684-2687, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31802595

RESUMO

Visible-light-driven molecular switches endowing reversible modulation of the functionalities of self-organized soft materials are currently highly sought after for fundamental scientific studies and technological applications. Reported herein are the design and synthesis of two novel halogen bond donor based chiral molecular switches that exhibit reversible photoisomerization upon exposure to visible light of different wavelengths. These chiral molecular switches induce photoresponsive helical superstructures, that is, cholesteric liquid crystals, when doped into the commercially available room-temperature achiral liquid crystal host 5CB, which also acts as a halogen-bond acceptor. The induced helical superstructure containing the molecular switch with terminal iodo atoms exhibits visible-light-driven reversible unwinding, that is, a cholesteric-nematic phase transition. Interestingly, the molecular switch with terminal bromo atoms confers reversible handedness inversion to the helical superstructure upon irradiation with visible light of different wavelengths. This visible-light-driven, reversible handedness inversion, enabled by a halogen bond donor molecular switch, is unprecedented.

17.
Opt Express ; 27(4): 3861-3866, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876010

RESUMO

We present polarization-independent optical shutters with a sub-millisecond switching time. The approach utilizes dual-frequency nematics doped with a dichroic dye. Two nematic cells with orthogonal alignment are driven simultaneously by a low-frequency or high-frequency electric field to switch the shutter either into a transparent or a light-absorbing state. The switching speed is accelerated via special short pulses of high amplitude voltage. The approach can be used in a variety of electro-optical devices.

18.
J Sep Sci ; 41(4): 982-989, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29178454

RESUMO

A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 µM (R2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples.


Assuntos
Compostos Benzidrílicos/análise , Cisteína/química , Fenóis/análise , Dióxido de Silício/química , Prata/química , Extração em Fase Sólida , Adsorção , Animais , Cromatografia Líquida de Alta Pressão , Água Potável/química , Leite/química , Tamanho da Partícula , Propriedades de Superfície
19.
Arch Virol ; 162(5): 1211-1221, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28110425

RESUMO

Many studies have revealed a protective effect of infection of an individual with an immunodeficiency virus against subsequent infection with a heterologous strain. However, the extent of protection against superinfection conferred by the first infection and the biological consequences of superinfection are not well understood. Here, we report that a rhesus monkey model of mucosal superinfection was established to investigate the protective immune response. Protection against superinfection was shown to correlate with the extent of the polyfunctionality of CD4+ effector memory T cells, whereas neutralizing antibody responses did not protect against superinfection in this model. Notably, immunodeficiency-virus-associated effector memory T-cell responses might significantly contribute to the suppression of virus superinfection. This provides a potential theoretical basis for the development of an HIV/AIDS vaccine.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Vírus da Imunodeficiência Símia/imunologia , Superinfecção/imunologia , Superinfecção/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Feminino , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Superinfecção/prevenção & controle , Carga Viral
20.
Opt Express ; 24(26): 29477-29482, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059334

RESUMO

Electro-optic response of liquid crystals in mainstream display applications exhibits a millisecond switching of optical retardance on the order of one micrometer. We demonstrate that a similarly large optical retardance can be switched much faster, within 10-100 nanoseconds, by using multiple passes of light through a cell filled with the nematic liquid crystal. The fast response is based on the so-called nanosecond electric modification of order parameters (NEMOP) effect. The described approach can be used to develop ultrafast optical shutters and modulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA