Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene ; 788: 145666, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887368

RESUMO

BACKGROUND: Recent studies in cancer biology suggest that metabolic glucose reprogramming is a potential target for cancer treatment. However, little is known about drug intervention in the glucose metabolism of cancer stem cells (CSCs) and its related underlying mechanisms. METHODS: The crude realgar powder was Nano-grinded to meets the requirements of Nano-pharmaceutical preparations, and Nano-realgar solution (NRS) was prepared for subsequent experiments. Isolation and characterization of lung cancer stem cells (LCSCs) was performed by magnetic cell sorting (MACS) and immunocytochemistry, respectively. Cell viability and intracellular glucose concentration were detected by MTT assay and glucose oxidase (GOD) kit. Protein expressions related to metabolic reprogramming was detected by ELISA assay. Determination of the expression of HIF-1α and PI3K/Akt/mTOR pathways was carried out by RT-PCR and western blotting analysis. A subcutaneous tumor model in BALB/c-nu mice was successfully established to evaluate the effects of Nano-realgar on tumor growth and histological structure, and the expression of HIF-1α in tumor tissues was measured by immunofluorescence. RESULTS: Nano-realgar inhibits cell viability and induces glucose metabolism in LCSCs, and inhibits protein expression related to metabolic reprogramming in a time- and dose-dependent manner. Nano-realgar downregulated the expression of HIF-1α and PI3K/Akt/mTOR pathways in vitro and in vivo. Nano-realgar inhibits tumor growth and changes the histological structure of tumors through in vivo experiments and consequently inhibits the constitutive activation of HIF-1α signaling. CONCLUSIONS: These results reveal that Nano-realgar inhibits tumor growth in vitro and in vivo by repressing metabolic reprogramming. This inhibitory effect potentially related to the downregulation HIF-1α expression via PI3K/Akt/mTOR pathway.


Assuntos
Antineoplásicos/administração & dosagem , Arsenicais/administração & dosagem , Glucose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Sulfetos/administração & dosagem , Células A549 , Antígeno AC133/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Arsenicais/química , Arsenicais/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Sulfetos/química , Sulfetos/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Bioact Mater ; 5(2): 364-376, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32206738

RESUMO

Basically, Mg-Al layered double hydroxide (LDH) coatings are prepared on the surface of micro-arc oxidation (MAO) coated magnesium (Mg) alloys at a high temperature or a low pH value. This scenario leads to the growth rate of LDH coating inferior to the dissolution rate of the MAO coating. This in turn results in limited corrosion resistance of the composite coating. In this study, a Mg-Al LDH coating on MAO-coated Mg alloy AZ31 is prepared through a water bath with a higher pH (13.76) at a lower temperature (60 °C). FE-SEM, EDS, XRD, XPS, and FT-IR are applied to analyze the surface morphology, chemical compositions, and growth process. Electrochemical polarization, electrochemical impedance spectroscopy (EIS) and hydrogen evolution tests are employed to evaluate the corrosion resistance of the samples. The results disclose that the MAO coating is completely covered by the nanosheet-structured LDH coating with a thickness of approximately 3.8 µm. The corrosion current density of the MAO-LDH composite coating is decreased four orders of magnitude in comparison to its substrate; the presence of a wide passivation region in anodic polarization branch demonstrates its strong self-healing ability, indicating the hybrid coating possesses excellent corrosion resistance. The formation mechanism of the LDH coating on the MAO-coated Mg alloy is proposed. Furthermore, the cytocompatibility is assessed via an indirect extraction test for MC3T3-E1 pre-osteoblasts, which indicates an acceptable cytocompatibility of osteoblasts for the composite coating.

3.
Bioact Mater ; 5(1): 34-43, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31956734

RESUMO

Micro-arc oxidation (MAO) coating with outstanding adhesion strength to Mg alloys has attracted more and more attention. However, owing to the porous structure, aggressive ions easily invaded the MAO/substrate interface through the through pores, limiting long-term corrosion resistance. Therefore, a dense and biocompatible tantalum oxide (Ta2O5) nanofilm was deposited on MAO coated Mg alloy AZ31 through atomic layer deposition (ALD) technique to seal the micropores and regulate the degradation rate. Surface micrography, chemical compositions and crystallographic structure were characterized using FE-SEM, EDS, XPS and XRD. The corrosion resistance of all samples was evaluated through electrochemical and hydrogen evolution tests. Results revealed that the Ta2O5 film mainly existed in the form of amorphousness. Moreover, uniform deposition of Ta2O5 film and effective sealing of micropores and microcracks in MAO coating were achieved. The current density (i corr) of the composite coating decreased three orders of magnitude than that of the substrate and MAO coating, improving corrosion resistance. Besides, the formation and corrosion resistance mechanisms of the composite coating were proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA