Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296525

RESUMO

Euphorbia factors, lathyrane-type diterpenoids isolated from the medical herb Euphorbia lathyris L. (Euphorbiaceae), have been associated with intestinal irritation toxicity, but the mechanisms underlying this phenomenon are still unknown. The objective of this study was to evaluate the transcriptome and miRNA profiles of human colon adenocarcinoma Caco-2 cells in response to Euphorbia factors L1 (EFL1) and EFL2. Whole transcriptomes of mRNA and microRNA (miRNA) were obtained using second generation high-throughput sequencing technology in response to 200 µM EFL treatment for 72 h, and the differentially expressed genes and metabolism pathway were enriched. Gene structure changes were analyzed by comparing them with reference genome sequences. After 72 h of treatment, 16 miRNAs and 154 mRNAs were differently expressed between the EFL1 group and the control group, and 47 miRNAs and 1101 mRNAs were differentially expressed between the EFL2 group and the control. Using clusters of orthologous protein enrichment, the sequenced mRNAs were shown to be mainly involved in transcription, post-translational modification, protein turnover, chaperones, signal transduction mechanisms, intracellular trafficking, secretion, vesicular transport, and the cytoskeleton. The differentially expressed mRNA functions and pathways were enriched in transmembrane transport, T cell extravasation, the IL-17 signaling pathway, apoptosis, and the cell cycle. The differentially expressed miRNA EFLs caused changes in the structure of the gene, including alternative splicing, insertion and deletion, and single nucleotide polymorphisms. This study reveals the underlying mechanism responsible for the toxicity of EFLs in intestinal cells based on transcriptome and miRNA profiles of gene expression and structure.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Diterpenos , Euphorbia , MicroRNAs , Humanos , Euphorbia/química , Transcriptoma , Células CACO-2 , Interleucina-17/genética , Neoplasias do Colo/genética , Diterpenos/farmacologia , Diterpenos/química , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Perfilação da Expressão Gênica
2.
Front Pharmacol ; 15: 1393717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939838

RESUMO

Background: Mesaconitine (MA), a diester-diterpenoid alkaloid extracted from the medicinal herb Aconitum carmichaelii, is commonly used to treat various diseases. Previous studies have indicated the potent toxicity of aconitum despite its pharmacological activities, with limited understanding of its effects on the nervous system and the underlying mechanisms. Methods: HT22 cells and zebrafish were used to investigate the neurotoxic effects of MA both in vitro and in vivo, employing multi-omics techniques to explore the potential mechanisms of toxicity. Results: Our results demonstrated that treatment with MA induces neurotoxicity in zebrafish and HT22 cells. Subsequent analysis revealed that MA induced oxidative stress, as well as structural and functional damage to mitochondria in HT22 cells, accompanied by an upregulation of mRNA and protein expression related to autophagic and lysosomal pathways. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed a correlation between the expression of autophagy-related genes and N6-methyladenosine (m6A) modification following MA treatment. In addition, we identified METTL14 as a potential regulator of m6A methylation in HT22 cells after exposure to MA. Conclusion: Our study has contributed to a thorough mechanistic elucidation of the neurotoxic effects caused by MA, and has provided valuable insights for optimizing the rational utilization of traditional Chinese medicine formulations containing aconitum in clinical practice.

3.
Chem Biol Interact ; 395: 111036, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705443

RESUMO

Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.


Assuntos
Caenorhabditis elegans , Espécies Reativas de Oxigênio , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinoxalinas/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Estresse Oxidativo/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Gelsemium/química , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Lipofuscina/metabolismo , Locomoção/efeitos dos fármacos , Alcaloides Indólicos
4.
Antioxidants (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107324

RESUMO

Acetaminophen (APAP) overdose still poses a major clinical challenge and is a leading cause of acute liver injury (ALI). N-acetylcysteine (NAC) is the only approved antidote to treat APAP toxicity while NAC therapy can trigger side effects including severe vomiting and even shock. Thus, new insights in developing novel therapeutic drugs may pave the way for better treatment of APAP poisoning. Previous research has reported that nuciferine (Nuci) possesses anti-inflammatory and antioxidant properties. Therefore, the objective of this study was proposed to investigate the hepatoprotective effects of Nuci and explore its underlying mechanisms. Mice were intraperitoneally (i.p.) administered with APAP (300 mg/kg) and subsequently injected with Nuci (25, 50, and 100 mg/kg, i.p.) at 30 min after APAP overdose. Then, all mice were sacrificed at 12 h after APAP challenge for further analysis. Nuci-treated mice did not show any side effects and our results revealed that treating Nuci significantly attenuated APAP-induced ALI, as confirmed by histopathological examinations, biochemical analysis, and diminished hepatic oxidative stress and inflammation. The in silico prediction and mRNA-sequencing analysis were performed to explore the underlying mechanisms of Nuci. GO and KEGG enrichment of the predicted target proteins of Nuci includes reactive oxygen species, drug metabolism of cytochrome P450 (CYP450) enzymes, and autophagy. Furthermore, the mRNA-sequencing analyses indicated that Nuci can regulate glutathione metabolic processes and anti-inflammatory responses. Consistently, we found that Nuci increased the hepatic glutathione restoration but decreased APAP protein adducts in damaged livers. Western blot analysis further confirmed that Nuci effectively promoted hepatic autophagy in APAP-treated mice. However, Nuci could not affect the expression levels of the main CYP450 enzymes (CYP1A2, CYP2E1, and CYP3A11). These results demonstrated that Nuci may be a potential therapeutic drug for APAP-induced ALI via amelioration of the inflammatory response and oxidative stress, regulation of APAP metabolism, and activation of autophagy.

5.
Toxics ; 11(10)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37888724

RESUMO

Toxicokinetics plays a crucial role in the health risk assessments of xenobiotics. Classical compartmental models are limited in their ability to determine chemical concentrations in specific organs or tissues, particularly target organs or tissues, and their limited interspecific and exposure route extrapolation hinders satisfactory health risk assessment. In contrast, physiologically based toxicokinetic (PBTK) models quantitatively describe the absorption, distribution, metabolism, and excretion of chemicals across various exposure routes and doses in organisms, establishing correlations with toxic effects. Consequently, PBTK models serve as potent tools for extrapolation and provide a theoretical foundation for health risk assessment and management. This review outlines the construction and application of PBTK models in health risk assessment while analyzing their limitations and future perspectives.

6.
ACS Appl Mater Interfaces ; 15(23): 27548-27559, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272856

RESUMO

Bacterial infections are one of the major contributing factors to human mortality, which can cause secondary damage to the injured area, such as leading to inflammation, tissue death, and even personal death. Herein, we developed a novel cyclodextrin (CD)-modified amphiphilic microgel with a 3D network nanostructure that encapsulates hydrophilic indocyanine green (ICG) as a trigger for photothermal therapy (PTT) and hydrophobic N,N'-disubstituted-butyl-N,N'-dinitro-1,4-benzenediamine (BNN6) as a heat-sensitive nitric oxide (NO) donor (CD@I-B) to cope with bacteria-infected wound therapy. This biocompatible microgel showed excellent broad-spectrum antibacterial capability under near-infrared (NIR) laser irradiation, while the photothermal conversion process promotes the deswelling of the microgel and release of NO, which synergistically accelerates wound healing. The therapy strategy by synergizing NO delivery with PTT promoted the formation of neovascularization and collagen fiber as well as the elimination of inflammation cells, thus facilitating wound healing. Our study further demonstrates the fantastic opportunities of applying high-performance microgels to provide all-in-one sites for treating wound sterilization and healing.


Assuntos
Microgéis , Óxido Nítrico , Humanos , Terapia Fototérmica , Doadores de Óxido Nítrico , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Inflamação
7.
Biomed Pharmacother ; 169: 115919, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37992574

RESUMO

Euphorbia factor L1 (EFL1) is a kind of lathyrane-type diterpenoid and is isolated from the medical herb Euphorbia lathyris L. (Euphorbiaceae); it has been reported with the toxicity that causes intestinal irritation, but the underlying mechanisms are still obscure. The objective of this study was to assess the EFL1-induced intestinal cytotoxicity in human colon adenocarcinoma Caco-2 cells. The Caco-2 cells were treated with EFL1, and the intracellular calcium ion concentration, mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (mPTP), adenosine 5'-triphosphate (ATP) content, ATPase activities, TGF-ß1 concentration, and transepithelial electrical resistance (TEER) were detected. The interaction between EFL1 and the tight junction proteins Occludin, Claudin-4, Tricellulin, ZO-1, JAM-1, and E-cadherin was simulated by molecular docking. The expression of proteins involved in the energy metabolism, the ion transporters and aquaporins, the tight junction, and the F-actin cytoskeleton were detected by Western blotting and cell immunofluorescence. As a result, EFL1 decreased the intracellular Ca2+, MMP, mPTP, ATP content, and ATPase activities in the Caco-2 cells. The AMPK/SIRT1/PGC-1α signaling pathway, which regulates the energy metabolism, was inhibited. The ion transporters NEH and CFTR, as well as the aquaporins in the Caco-2 cells, were decreased. The tight junction proteins were down-regulated, and the integrity of the intestinal barrier was injured; TGF-ß1 was compensatively increased; so, the intestinal permeability was increased and was characterized by decreased TEER. The morphology of the F-actin cytoskeleton was destroyed. These findings indicated that EFL1 caused cytotoxicity in the human intestinal Caco-2 cells through mitochondrial damage, inhibition of the energy metabolism, and suppression of the ion and water molecule transporters, as well as the down-regulation tight junction and cytoskeleton protiens.


Assuntos
Adenocarcinoma , Aquaporinas , Neoplasias do Colo , Diterpenos , Humanos , Células CACO-2 , Fator de Crescimento Transformador beta1/metabolismo , Simulação de Acoplamento Molecular , Adenocarcinoma/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Diterpenos/farmacologia , Diterpenos/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Aquaporinas/metabolismo , Adenosina Trifosfatases/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidade
8.
Genes (Basel) ; 13(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35627166

RESUMO

Humantenine, an alkaloid isolated from the medicinal herb Gelsemium elegans (Gardner & Chapm.) Benth., has been reported to induce intestinal irritation, but the underlying toxicological mechanisms remain unclear. The object of the present study was to investigate the RNA N6-methyladenosine (m6A) modification and distinct mRNA transcriptome profiles in humantenine-treated HCT116 human colon cancer cells. High-throughput MeRIP-seq and mRNA-seq were performed, and bioinformatic analysis was performed to reveal the role of abnormal RNA m6A modification and mRNA expression in humantenine-induced intestinal cell toxicity. After humantenine treatment of HCT116 cells, 1401 genes were in the overlap of differentially m6A-modified mRNA and differentially expressed mRNA. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotation terms for actin cytoskeleton, tight junctions, and adherens junctions were enriched. A total of 11 kinds of RNA m6A methylation regulators were differentially expressed. The m6A methylation levels of target genes were disordered in the humantenine group. In conclusion, this study suggested that the HCT116 cell injury induced by humantenine was associated with the abnormal mRNA expression of m6A regulators, as well as disordered m6A methylation levels of target genes.


Assuntos
Alcaloides , Neoplasias do Colo , Linhagem Celular , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Humanos , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Genes (Basel) ; 14(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36672820

RESUMO

Aflatoxin B1 (AFB1) is widely prevalent in foods and animal feeds and is one of the most toxic and carcinogenic aflatoxin subtypes. Existing studies have proved that the intestine is targeted by AFB1, and adverse organic effects have been observed. This study aimed to investigate the relationship between AFB1-induced intestinal toxicity and N6-methyladenosine (m6A) RNA methylation, which involves the post-transcriptional regulation of mRNA expression. The transcriptome-wide m6A methylome and transcriptome profiles in human intestinal cells treated with AFB1 are presented. Methylated RNA immunoprecipitation sequencing and mRNA sequencing were carried out to determine the distinctions in m6A methylation and different genes expressed in AFB1-induced intestinal toxicity. The results showed that there were 2289 overlapping genes of the differentially expressed mRNAs and differentially m6A-methylation-modified mRNAs. After enrichment of the signaling pathways and biological processes, these genes participated in the terms of the cell cycle, endoplasmic reticulum, tight junction, and mitophagy. In conclusion, the study demonstrated that AFB1-induced HCT116 injury was related to the disruptions to the levels of m6A methylation modifications of target genes and the abnormal expression of m6A regulators.


Assuntos
Aflatoxina B1 , Transcriptoma , Animais , Humanos , Aflatoxina B1/toxicidade , Células HCT116 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Intestinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA