Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 173(4): 1003-1013.e15, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681457

RESUMO

The majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data. Multiple subclones were detected in 59% of patients, and specific subclonal architectures associate with adverse clinicopathological features. Early tumor development is characterized by point mutations and deletions followed by later subclonal amplifications and changes in trinucleotide mutational signatures. Specific genes are selectively mutated prior to or following subclonal diversification, including MTOR, NKX3-1, and RB1. Patients with low-risk monoclonal tumors rarely relapse after primary therapy (7%), while those with high-risk polyclonal tumors frequently do (61%). The presence of multiple subclones in an index biopsy may be necessary, but not sufficient, for relapse of localized prostate cancer, suggesting that evolution-aware biomarkers should be studied in prospective studies of low-risk tumors suitable for active surveillance.


Assuntos
Neoplasias da Próstata/patologia , Biomarcadores Tumorais/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Estudos Prospectivos , Neoplasias da Próstata/classificação , Neoplasias da Próstata/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Nature ; 541(7637): 359-364, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28068672

RESUMO

Prostate tumours are highly variable in their response to therapies, but clinically available prognostic factors can explain only a fraction of this heterogeneity. Here we analysed 200 whole-genome sequences and 277 additional whole-exome sequences from localized, non-indolent prostate tumours with similar clinical risk profiles, and carried out RNA and methylation analyses in a subset. These tumours had a paucity of clinically actionable single nucleotide variants, unlike those seen in metastatic disease. Rather, a significant proportion of tumours harboured recurrent non-coding aberrations, large-scale genomic rearrangements, and alterations in which an inversion repressed transcription within its boundaries. Local hypermutation events were frequent, and correlated with specific genomic profiles. Numerous molecular aberrations were prognostic for disease recurrence, including several DNA methylation events, and a signature comprised of these aberrations outperformed well-described prognostic biomarkers. We suggest that intensified treatment of genomically aggressive localized prostate cancer may improve cure rates.


Assuntos
Genoma Humano/genética , Genômica , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Cromotripsia , Variações do Número de Cópias de DNA , Metilação de DNA , Exoma/genética , Humanos , Masculino , Metástase Neoplásica/genética , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Recidiva
3.
Cell Rep Methods ; : 100884, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39447572

RESUMO

There are myriad types of biomedical data-molecular, clinical images, and others. When a group of patients with the same underlying disease exhibits similarities across multiple types of data, this is called a subtype. Existing subtyping approaches struggle to handle diverse data types with missing information. To improve subtype discovery, we exploited changes in the correlation-structure between different data types to create iSubGen, an algorithm for integrative subtype generation. iSubGen can accommodate any feature that can be compared with a similarity metric to create subtypes versatilely. It can combine arbitrary data types for subtype discovery, such as merging genetic, transcriptomic, proteomic, and pathway data. iSubGen recapitulates known subtypes across multiple cancers even with substantial missing data and identifies subtypes with distinct clinical behaviors. It performs equally with or superior to other subtyping methods, offering greater stability and robustness to missing data and flexibility to new data types. It is available at https://cran.r-project.org/web/packages/iSubGen.

4.
Adv Sci (Weinh) ; 11(20): e2307129, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493497

RESUMO

Recently mapped transcriptomic landscapes reveal the extent of heterogeneity in cancer-associated fibroblasts (CAFs) beyond previously established single-gene markers. Functional analyses of individual CAF subsets within the tumor microenvironment are critical to develop more accurate CAF-targeting therapeutic strategies. However, there is a lack of robust preclinical models that reflect this heterogeneity in vitro. In this study, single-cell RNA sequencing datasets acquired from head and neck squamous cell carcinoma tissues to predict microenvironmental and cellular features governing individual CAF subsets are leveraged. Some of these features are then incorporated into a tunable hyaluronan-based hydrogel system to culture patient-derived CAFs. Control over hydrogel degradability and integrin adhesiveness enabled derivation of the predominant myofibroblastic and inflammatory CAF subsets, as shown through changes in cell morphology and transcriptomic profiles. Last, using these hydrogel-cultured CAFs, microtubule dynamics are identified, but not actomyosin contractility, as a key mediator of CAF plasticity. The recapitulation of CAF heterogeneity in vitro using defined hydrogels presents unique opportunities for advancing the understanding of CAF biology and evaluation of CAF-targeting therapeutics.


Assuntos
Fibroblastos Associados a Câncer , Hidrogéis , Microambiente Tumoral , Hidrogéis/química , Humanos , Microambiente Tumoral/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Bioengenharia/métodos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo
5.
Nat Commun ; 14(1): 1680, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973261

RESUMO

Profiling tumors at single-cell resolution provides an opportunity to understand complexities underpinning lymph-node metastases in head and neck squamous-cell carcinoma. Single-cell RNAseq (scRNAseq) analysis of cancer-cell trajectories identifies a subpopulation of pre-metastatic cells, driven by actionable pathways including AXL and AURK. Blocking these two proteins blunts tumor invasion in patient-derived cultures. Furthermore, scRNAseq analyses of tumor-infiltrating CD8 + T-lymphocytes show two distinct trajectories to T-cell dysfunction, corroborated by their clonal architecture based on single-cell T-cell receptor sequencing. By determining key modulators of these trajectories, followed by validation using external datasets and functional experiments, we uncover a role for SOX4 in mediating T-cell exhaustion. Finally, interactome analyses between pre-metastatic tumor cells and CD8 + T-lymphocytes uncover a putative role for the Midkine pathway in immune-modulation and this is confirmed by scRNAseq of tumors from humanized mice. Aside from specific findings, this study demonstrates the importance of tumor heterogeneity analyses in identifying key vulnerabilities during early metastasis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Camundongos , Animais , Carcinoma de Células Escamosas/patologia , Evasão da Resposta Imune , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral
6.
Nat Commun ; 14(1): 2781, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188668

RESUMO

Single-agent checkpoint inhibitor (CPI) activity in Epstein-Barr Virus (EBV) related nasopharyngeal carcinoma (NPC) is limited. Dual CPI shows increased activity in solid cancers. In this single-arm phase II trial (NCT03097939), 40 patients with recurrent/metastatic EBV-positive NPC who failed prior chemotherapy receive nivolumab 3 mg/kg every 2 weeks and ipilimumab 1 mg/kg every 6 weeks. Primary outcome of best overall response rate (BOR) and secondary outcomes (progression-free survival [PFS], clinical benefit rate, adverse events, duration of response, time to progression, overall survival [OS]) are reported. The BOR is 38% with median PFS and OS of 5.3 and 19.5 months, respectively. This regimen is well-tolerated and treatment-related adverse events requiring discontinuation are low. Biomarker analysis shows no correlation of outcomes to PD-L1 expression or tumor mutation burden. While the BOR does not meet pre-planned estimates, patients with low plasma EBV-DNA titre (<7800 IU/ml) trend to better response and PFS. Deep immunophenotyping of pre- and on-treatment tumor biopsies demonstrate early activation of the adaptive immune response, with T-cell cytotoxicity seen in responders prior to any clinically evident response. Immune-subpopulation profiling also identifies specific PD-1 and CTLA-4 expressing CD8 subpopulations that predict for response to combined immune checkpoint blockade in NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Herpesvirus Humano 4/genética , Receptor de Morte Celular Programada 1 , Antígeno CTLA-4 , Recidiva Local de Neoplasia/tratamento farmacológico , Resultado do Tratamento , Neoplasias Nasofaríngeas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica
7.
Nat Commun ; 13(1): 208, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017538

RESUMO

Cancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and behaviour change with the age of the patient. The molecular bases for these relationships remain largely underexplored. To characterise them, we analyse age-associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age influences both the number of mutations in a tumour (0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational signatures are associated with age, reflecting differences in exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, but higher activity of DNA damage repair signatures in those of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-associated frequencies, and these alter the transcriptome and predict for clinical outcomes. These effects are most striking in brain cancers where alterations like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show that age shapes the somatic mutational landscape of cancer, with clinical implications.


Assuntos
Envelhecimento/genética , Proteína de Ligação a CREB/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Reparo do DNA , DNA de Neoplasias/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Fatores Etários , Envelhecimento/metabolismo , Proteína de Ligação a CREB/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA de Neoplasias/metabolismo , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mitocôndrias/metabolismo , Taxa de Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias/classificação , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Fumar/genética , Fumar/metabolismo , Transcriptoma , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
8.
NAR Genom Bioinform ; 4(1): lqac018, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35265837

RESUMO

Living organisms are continuously challenged by changes in their environment that can propagate to stresses at the cellular level, such as rapid changes in osmolarity or oxygen tension. To survive these sudden changes, cells have developed stress-responsive mechanisms that tune cellular processes. The response of Saccharomyces cerevisiae to osmostress includes a massive reprogramming of gene expression. Identifying the inherent features of stress-responsive genes is of significant interest for understanding the basic principles underlying the rewiring of gene expression upon stress. Here, we generated a comprehensive catalog of osmostress-responsive genes from 5 independent RNA-seq experiments. We explored 30 features of yeast genes and found that 25 (83%) were distinct in osmostress-responsive genes. We then identified 13 non-redundant minimal osmostress gene traits and used statistical modeling to rank the most stress-predictive features. Intriguingly, the most relevant features of osmostress-responsive genes are the number of transcription factors targeting them and gene conservation. Using data on HeLa samples, we showed that the same features that define yeast osmostress-responsive genes can predict osmostress-responsive genes in humans, but with changes in the rank-ordering of feature-importance. Our study provides a holistic understanding of the basic principles of the regulation of stress-responsive gene expression across eukaryotes.

9.
Nat Commun ; 11(1): 737, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024819

RESUMO

Many primary tumours have low levels of molecular oxygen (hypoxia), and hypoxic tumours respond poorly to therapy. Pan-cancer molecular hallmarks of tumour hypoxia remain poorly understood, with limited comprehension of its associations with specific mutational processes, non-coding driver genes and evolutionary features. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we quantify hypoxia in 1188 tumours spanning 27 cancer types. Elevated hypoxia associates with increased mutational load across cancer types, irrespective of underlying mutational class. The proportion of mutations attributed to several mutational signatures of unknown aetiology directly associates with the level of hypoxia, suggesting underlying mutational processes for these signatures. At the gene level, driver mutations in TP53, MYC and PTEN are enriched in hypoxic tumours, and mutations in PTEN interact with hypoxia to direct tumour evolutionary trajectories. Overall, hypoxia plays a critical role in shaping the genomic and evolutionary landscapes of cancer.


Assuntos
Mutação , Neoplasias/genética , Hipóxia Tumoral/genética , Hipóxia Celular/genética , Genes myc , Genoma Humano , Variação Estrutural do Genoma , Humanos , Neoplasias/patologia , PTEN Fosfo-Hidrolase/genética , Polimorfismo de Nucleotídeo Único , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética , Sequenciamento Completo do Genoma
10.
Nat Commun ; 11(1): 4330, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859912

RESUMO

Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.


Assuntos
Mutação , Neoplasias/genética , Oncogenes/genética , Caracteres Sexuais , Instabilidade Cromossômica , Exoma , Feminino , Genoma Humano , Instabilidade Genômica , Humanos , Modelos Logísticos , Masculino , Fases de Leitura Aberta , beta Catenina/genética
11.
Cancer Res ; 78(19): 5527-5537, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275052

RESUMO

Cancer differs significantly between men and women; even after adjusting for known epidemiologic risk factors, the sexes differ in incidence, outcome, and response to therapy. These differences occur in many but not all tumor types, and their origins remain largely unknown. Here, we compare somatic mutation profiles between tumors arising in men and in women. We discovered large differences in mutation density and sex biases in the frequency of mutation of specific genes; these differences may be associated with sex biases in DNA mismatch repair genes or microsatellite instability. Sex-biased genes include well-known drivers of cancer such as ß-catenin and BAP1 Sex influenced biomarkers of patient outcome, where different genes were associated with tumor aggression in each sex. These data call for increased study and consideration of the molecular role of sex in cancer etiology, progression, treatment, and personalized therapy.Significance: This study provides a comprehensive catalog of sex differences in somatic alterations, including in cancer driver genes, which influence prognostic biomarkers that predict patient outcome after definitive local therapy. Cancer Res; 78(19); 5527-37. ©2018 AACR.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias/genética , Fatores Sexuais , Adulto , Idoso , Idoso de 80 Anos ou mais , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , Progressão da Doença , Feminino , Genoma Humano , Humanos , Masculino , Instabilidade de Microssatélites , Repetições de Microssatélites , Pessoa de Meia-Idade , Mutação , Oncogenes , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adulto Jovem , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA