Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 116(1): 110775, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163573

RESUMO

AIM: To assess the differential expression profiles of exosome-derived microRNA (miRNA) and reveal their potential functions in patients with acute viral myocarditis (AVMC). MATERIALS & METHODS: Peripheral blood samples were collected from 9 patients diagnosed with AVMC and 9 healthy controls (HC) in the Affiliated Hospital of Qingdao University from July 2021 to September 2022. The exosomal miRNA expression were tested using RNA high-throughput sequencing. We conducted the GO and KEGG functional analysis to predict the potential molecular, biological functions and related signaling pathways of miRNAs in exosomes. Target genes of exosomal miRNAs were predicted and miRNA-target gene network was mapped using gene databases. Differentially expressed exosomal miRNAs were selected and their expression levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) to verify the sequencing results. RESULTS: P < 0.05 and Fold Change>2 were considered as cut-off value to screen miRNAs that were differently expressed. This study identified 14 upregulated and 14 downregulated exosome-derived miRNAs. GO and KEGG analysis showed that differentially expressed miRNAs may be related to ß-catenin binding, DNA transcription activities, ubiquitin ligase, PI3K-Akt, FoxO, P53, MAPK, and etc.. The target genes of differentially expressed miRNAs were predicted using gene databases. Real-time PCR confirmed the upregulation of hsa-miR-548a-3p and downregulation of hsa-miR-500b-5p in AVMC. CONCLUSIONS: Hsa-miR-548a-3p and hsa-miR-500b-5p could serve as a promising biomarker of AVMC. Exosomal miRNAs may have substantial roles in the mechanisms of AVMC.


Assuntos
MicroRNAs , Miocardite , Viroses , Humanos , MicroRNAs/metabolismo , Miocardite/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Regulação para Baixo
2.
J Transl Med ; 22(1): 433, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720361

RESUMO

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Assuntos
Cardiotoxicidade , Doxorrubicina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doxorrubicina/efeitos adversos , Cardiotoxicidade/etiologia , Animais , Disbiose , Transplante de Microbiota Fecal
3.
Front Immunol ; 15: 1264856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455049

RESUMO

Background: Increasing evidence indicating that coronavirus disease 2019 (COVID-19) increased the incidence and related risks of pericarditis and whether COVID-19 vaccine is related to pericarditis has triggered research and discussion. However, mechanisms behind the link between COVID-19 and pericarditis are still unknown. The objective of this study was to further elucidate the molecular mechanisms of COVID-19 with pericarditis at the gene level using bioinformatics analysis. Methods: Genes associated with COVID-19 and pericarditis were collected from databases using limited screening criteria and intersected to identify the common genes of COVID-19 and pericarditis. Subsequently, gene ontology, pathway enrichment, protein-protein interaction, and immune infiltration analyses were conducted. Finally, TF-gene, gene-miRNA, gene-disease, protein-chemical, and protein-drug interaction networks were constructed based on hub gene identification. Results: A total of 313 common genes were selected, and enrichment analyses were performed to determine their biological functions and signaling pathways. Eight hub genes (IL-1ß, CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC) were identified using the protein-protein interaction network, and immune infiltration analysis was then carried out to examine the functional relationship between the eight hub genes and immune cells as well as changes in immune cells in disease. Transcription factors, miRNAs, diseases, chemicals, and drugs with high correlation with hub genes were predicted using bioinformatics analysis. Conclusions: This study revealed a common gene interaction network between COVID-19 and pericarditis. The screened functional pathways, hub genes, potential compounds, and drugs provided new insights for further research on COVID-19 associated with pericarditis.


Assuntos
COVID-19 , Pericardite , Humanos , Vacinas contra COVID-19 , COVID-19/genética , Biologia Computacional , Biologia de Sistemas , Pericardite/genética
4.
Comb Chem High Throughput Screen ; 27(7): 1056-1070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305398

RESUMO

AIM: To analyze the sequencing results of circular RNAs (circRNAs) in cardiomyocytes between the doxorubicin (DOX)-injured group and exosomes treatment group. Moreover, to offer potential circRNAs possibly secreted by exosomes mediating the therapeutic effect on DOX-induced cardiotoxicity for further study. METHODS: The DOX-injured group (DOX group) of cardiomyocytes was treated with DOX, while an exosomes-treated group of injured cardiomyocytes were cocultured with bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BEC group). The high-throughput sequencing of circRNAs was conducted after the extraction of RNA from cardiomyocytes. The differential expression of circRNA was analyzed after identifying the number, expression, and conservative of circRNAs. Then, the target genes of differentially expressed circRNAs were predicted based on the targetscan and Miranda database. Next, the GO and KEGG enrichment analyses of target genes of circRNAs were performed. The crucial signaling pathways participating in the therapeutic process were identified. Finally, a real-time quantitative polymerase chain reaction experiment was conducted to verify the results obtained by sequencing. RESULTS: Thirty-two circRNAs are differentially expressed between the two groups, of which twenty-three circRNAs were elevated in the exosomes-treated group (BEC group). The GO analysis shows that target genes of differentially expressed circRNAs are mainly enriched in the intracellular signalactivity, regulation of nucleic acid-templated transcription, Golgi-related activity, and GTPase activator activity. The KEGG analysis displays that they were involved in the autophagy biological process and NOD-like receptor signaling pathway. The verification experiment suggested that mmu_circ_0000425 (ID: 116324210) was both decreased in the DOX group and elevated in BEC group, which was consistent with the result of sequencing. CONCLUSION: mmu_circ_0000425 in exosomes derived from bone marrow mesenchymal stem cells (BMSC) may have a therapeutic role in alleviating doxorubicin-induced cardiotoxicity (DIC).


Assuntos
Doxorrubicina , Exossomos , Células-Tronco Mesenquimais , Miócitos Cardíacos , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Doxorrubicina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Animais , Perfilação da Expressão Gênica , Ratos , Células Cultivadas
5.
J Inflamm Res ; 17: 669-685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328563

RESUMO

Purpose: Doxorubicin-induced cardiotoxicity (DIC) is a severe side reaction in cancer chemotherapy that greatly impacts the well-being of cancer patients. Currently, there is still an insufficiency of effective and reliable biomarkers in the field of clinical practice for the early detection of DIC. This study aimed to determine and validate the potential diagnostic and predictive values of critical signatures in DIC. Methods: We obtained high-throughput sequencing data from the GEO database and performed data analysis and visualization using R software, GO, KEGG and Cytoscape. Machine learning methods and weighted gene coexpression network (WGCNA) were used to identify key genes for diagnostic model construction. Receiver operating characteristic (ROC) analysis and a nomogram were used to assess their diagnostic values. A multiregulatory network was built to reveal the possible regulatory relationships of critical signatures. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) analysis was used to investigate differential immune cell infiltration. Additionally, a cell and animal model were constructed to investigate the relationship between the identified genes and DIC. Results: Among the 3713 differentially expressed genes, three key genes (CSGALNACT1, ZNF296 and FANCB) were identified. A nomogram and ROC curves based on three key genes showed excellent diagnostic predictive performance. The regulatory network analysis showed that the TFs CREB1, EP300, FLI1, FOXA1, MAX, and MAZ modulated three key genes. An analysis of immune cell infiltration indicated that many immune cells (activated NK cells, M0 macrophages, activated dendritic cells and neutrophils) might be related to the progression of DIC. Furthermore, there may be various degrees of correlation between the three critical signatures and immune cells. RT‒qPCR demonstrated that the mRNA expression of CSGALNACT1 and ZNF296 was significantly upregulated, while FANCB was significantly downregulated in DOX-treated cardiomyocytes in vitro and in vivo. Conclusion: Our study suggested that the differential expression of CSGALNACT1, ZNF296 and FANCB is associated with cardiotoxicity and is also involved in immune cell infiltration in DIC. They might be potential biomarkers for the early occurrence of DIC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA