Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(3): 1001-1008, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198561

RESUMO

We report a zero-dimensional (0D) lead-free chiral perovskite (S-/R-MBA)4Bi2I10 with a high degree of circularly polarized light (CPL) emission. Our 0D lead-free chiral perovskite exhibits an average degree of circular polarization (DOCP) of 19.8% at 78 K under linearly polarized laser excitation, and the maximum DOCP can reach 25.8%, which is 40 times higher than the highest DOCP of 0.5% in all reported lead-free chiral perovskites to the best of our knowledge. The high DOCP of (S-/R-MBA)4Bi2I10 is attributed to the free exciton emission with a Huang-Rhys factor of 2.8. In contrast, all the lead-free chiral perovskites in prior reports are dominant by self-trapped exciton in which the spin relaxation reduces DOCP dramatically. Moreover, we realize the manipulation of the valley degree of freedom of monolayer WSe2 by using the spin injection of the 0D chiral lead-free perovskites. Our results provide a new perspective to develop lead-free chiral perovskite devices for CPL light source, spintronics, and valleytronics.

2.
Nano Lett ; 23(14): 6581-6587, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439779

RESUMO

Although selective singlet and triplet interlayer exciton (IX) emission of transition metal dichalcogenides (TMD) heterostructures can be achieved by applying an electric or magnetic field, the device structure is complex and a low temperature is usually required. Here, we demonstrate a simple all-optical approach to selectively enhance the emission of singlet and triplet IX by selectively coupling singlet or triplet IX of a WS2/WSe2 heterostructure to a SiO2 microsphere cavity. Angle-resolved photoluminescene reveals that the transition dipole of triplet IX is almost along the out-of-plane direction, while singlet IX only has 69% out-of-plane dipole moment contribution. Since the out-of-plane dipole presents a higher Purcell factor within the cavity, we can simultaneously enhance the emission intensity of IX and control the emissive IX species at room temperature in an all-optical route. Importantly, we demonstrate an all-optical valley polarization switch with a record high on/off ratio of 35.

3.
Nano Lett ; 22(17): 7230-7237, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36036787

RESUMO

Interlayer excitons (IXs) in type II van der Waals (vdW) heterostructures are equipped with an oriented permanent dipole moment and long lifetime and thus would allow promising applications in excitonic and optoelectronic devices. However, based on the widely studied heterostructures of transition-metal dichalcogenides (TMDs), IX emission is greatly influenced by the lattice mismatch and geometric misalignment between the constituent layers, increasing the complexity of the device fabrication. Here, we report on the robust momentum-indirect IX emission in TMD/two-dimensional (2D) perovskite vdW heterostructures, which were fabricated without considering the orientation arrangement or momentum mismatch. The IXs show a large diffusion coefficient of ∼10 cm2 s-1, and importantly the IX emission energy can be widely tuned from 1.3 to 1.6 eV via changing the layer number of the 2D perovskite or the thickness of TMD flakes, shedding light on the applications of vdW interface engineering to broad-spectrum optoelectronics.

4.
Nano Lett ; 21(14): 6156-6162, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279971

RESUMO

The detection of polarization states of light is essential in photonic and optoelectronic devices. Currently, the polarimeters are usually constructed with the help of waveplates or a comprehensive metasurface, which will inevitably increase the fabrication complexity and unnecessary energy loss. Here, we have successfully demonstrated a self-powered filterless on-chip full-Stokes polarimeter based on a single-layer MoS2/few-layer MoS2 homojunction. Combining the built-in electric field enhanced circular photogalvanic effect with the intrinsic optical anisotropy of MoS2 between in-plane and out-of-plane directions, the device is able to conveniently sense four Stokes parameters of incident light at zero bias without requiring an extra filtering layer and can function in the wavelength range of 650-690 nm with acceptable average errors. Besides, this homojunction device is easy to integrate with silicon-based chips and could have much smaller sizes than metasurface based polarimeters. Our study thus provides an excellent paradigm for high-performance on-chip filterless polarimeters.

5.
Nano Lett ; 21(11): 4584-4591, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34037402

RESUMO

Recently, a two-dimensional Dion-Jacobson (DJ) perovskite (AMP)PbI4 (AMP = 4-(aminomethyl)piperidinium) is emerging with remarkable Rashba effect and ferroelectricity. However, the origin of the giant Rashba splitting remains elusive and the current synthetic strategy via slow cooling is time- and power-consuming, hindering its future applications. Here, we report on an economical aqueous method to obtain (AMP)PbI4 crystals and clarify the origin of the giant Rashba effect by temperature- and polarization-dependent photoluminescence (PL) spectroscopy. The strong temperature-dependent PL helicity indicates the thermally assisted structural distortion as the main origin of the Rashba effect, suggesting that valley polarization still preserves at high temperatures. The Rashba effect was further confirmed by the circular photogalvanic effect near the indirect bandgap. Our study not only optimizes the synthetic strategies of this DJ perovskite but also sheds light on its potential applications in room/high-temperature spintronics and valleytronics.

6.
Small ; 17(47): e2103855, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34643061

RESUMO

Full-Stokes polarimeters, equipped with the capability of discriminating light polarization states, can find important applications in various optical and optoelectronic devices. Nevertheless, currently most full-Stokes polarimeters require complex and bulky optical elements or optical metasystems integrated with metasurfaces, which can increase the cost and cause energy loss. Here, the anisotropy of chiral 2D perovskite single crystals is explored and the full-Stokes polarimeter based on pure chiral 2D perovskite single crystals is reported. By using optical anisotropy and the ability to distinguish the helicity of the circularly polarized light, chiral 2D perovskite polarimeter integrates the polarizer, waveplate, and photodetector together and thus can be able to discriminate the polarization states of light. The as-fabricated device exhibits a photoresponsivity of 0.136 A W-1 and a detectivity of 1.2 × 1010 Jones. This study provides a paradigm to construct filterless on-chip Stokes polarimeter with great simplicity and low cost.

7.
Small ; 17(5): e2005918, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33432674

RESUMO

Excitons, bound pairs of electrons and holes, could act as an intermediary between electronic signal processing and optical transmission, thus speeding up the interconnection of photoelectric communication. However, up to date, exciton-based logic devices such as switches that work at room temperature are still lacking. This work presents a prototype of a room-temperature optoelectronic switch based on excitons in WSe2 monolayer. The emission intensity of WSe2 stacked on Au and SiO2 substrates exhibits completely opposite behaviors upon applying gate voltages. Such observation can be ascribed to different doping behaviors of WSe2 caused by charge-transfer and chemical-doping effect at WSe2 /Au and WSe2 /SiO2 interfaces, respectively, together with the charge-drift effect. These interesting features can be utilized for optoelectronic switching, confirmed by the cyclic PL switching test for a long time exceeding 4000 s. This study offers a universal and reliable approach for the fabrication of exciton-based optoelectronic switches, which would be essential in integrated nanophotonics.

8.
Nano Lett ; 20(4): 2339-2347, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163293

RESUMO

Optical anisotropy plays an indispensable role in a variety of optical components. Organic halide perovskites often rely on artificially oriented nanostructures to enhance optical anisotropy due to their in-plane isotropic crystal structure, which results in unnecessary optical losses and fabrication difficulties. Here, we report the large optical anisotropy in two-dimensional perovskite [CH(NH2)2][C(NH2)3]PbI4 crystals. Without specially designing their morphology, we achieved a large photoresponse linear dichroic ratio of 2 and a photoluminescence linear dichroic ratio of 4.7. Furthermore, we identified that the polarization orientation is parallel to the corrugated inorganic layers on every crystal plane by density functional theory calculations. The anisotropy of the ab-plane and ac-plane changes in opposite trend with temperature, suggesting that the perovskite can selectively generate polarized light or unpolarized light from different crystal planes by tuning the temperature. Our studies provide a new platform toward two-dimensional perovskite-based optical polarization devices.

9.
Nature ; 570(7762): E62-E64, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31243377
10.
Small ; 15(42): e1902424, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31448529

RESUMO

Charge transfer in transition-metal-dichalcogenides (TMDs) heterostructures is a prerequisite for the formation of interlayer excitons, which hold great promise for optoelectronics and valleytronics. Charge accumulation accompanied by a charge-transfer process can introduce considerable effect on interlayer exciton-based applications; nevertheless, this aspect has been rarely studied up to date. This work demonstrates how the charge accumulation affects the light emission of interlayer excitons in van der Waals heterobilayers (HBs) consisting of monolayer WSe2 and WS2 . As excitation power increases, the photoluminescence intensity of interlayer excitons increases more rapidly than that of intralayer excitons. The phenomenon can be explained by charge-accumulation effect, which not only increases the recombination probability of interlayer excitons but also saturates the charge-transfer process. This scenario is further confirmed by a careful examination of trion binding energy of WS2 , which nonlinearly increases with the increase of the excitation power before reaching a maximum of about 75 meV. These investigations provide a better understanding of interlayer excitons and trions in HBs, which may provoke further explorations of excitonic physics as well as TMDs-based devices.

11.
Small ; 15(6): e1804152, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30645019

RESUMO

The low-dimensional halide perovskites have received enormous attention due to their unique photovoltaic and optoelectronic performances. Periodic spacers are used to inhibit the growth of 3D perovskite and fabricate a 2D counterpart with layered structure, mostly based on organic/inorganic cations. Herein, by introducing organic anions (e.g., pentanedioic acid (PDA) and hexanedioic acid (HDA) simultaneously), leaf-shaped (Cs3 Pb2 Br5 )2 (PDA-HDA) microplates with low-dimensional structure are synthesized. They also exhibit significant photoluminescence (PL) centered at 540 nm with a narrow emission peak. The synthesis of single crystals of Pb(PDA) and Pb(HDA) allows to further clarify the crystal structure of (Cs3 Pb2 Br5 )2 (PDA-HDA) perovskite and its structural evolution mechanism. Moreover, the cooperative introduction of dicarboxylic acid pairs with appropriate lengths is thermodynamically favored for the low-dimensional perovskite crystallization. The temperature-dependent PL indicates a V-shaped Stokes shift with elevated temperature that could be associated with the localization of excitons in the inorganic layers between organic dicarboxylic acid molecules. This work demonstrates low-dimensional halide perovskite with anionic spacers, which also opens up a new approach to the growth of low-dimensional organic-inorganic hybrid perovskite crystals.

12.
Opt Express ; 27(21): 30618-30628, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684306

RESUMO

Improving the optoelectronic characteristics of organic-inorganic perovskites is crucial for fabrication of functional devices. Herein, we demonstrate that the optoelectronic properties of 2D organic-inorganic perovskites can be greatly improved by UV-light illumination during growth. The photoluminescence emission of the 2D perovskite exhibits a 3.1-folds increase in intensity, with a decreased trap-assisted recombination. The improved optoelectronic characteristics can be attributed to the high-quality crystallization and lattice expansion induced by the UV-light illumination. Moreover, the optimized 2D perovskites enable the fabrication of photoconductive devices with improved optoelectronic responses. This work indicates that light illumination is a novel and convenient approach for engineering the fabrication of 2D organic-inorganic hybrid perovskites, which advocates great promise for achieving high-performance functional devices.

13.
BMC Cancer ; 19(1): 1020, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664937

RESUMO

BACKGROUND: Accumulating evidence suggests that Gamma-glutamyltransferase (GGT) may be involved in cancer occurrence and progression. However, the prognostic role of serum GGT in pancreatic cancer (PC) survival lacks adequate evaluation. In this study, we aimed to analyze the association between serum GGT measured at diagnosis and overall survival (OS) in patients with metastatic PC. METHODS: We identified 320 patients with histopathologically confirmed metastatic pancreatic ductal adenocarcinoma (PDAC) diagnosed during 2015 and 2016 at a specialized cancer hospital in southwestern China. Univariate and multivariate Cox proportional-hazards models were used to determine associations between serum GGT and OS in metastatic PDAC. RESULTS: Controlled for possible confounding factors, serum GGT was significantly associated with OS: serum GGT > 48 U/L yielded a hazard ratio of 1.53 (95% CI: 1.19-1.97) for mortality risk. A significant dose-response association between serum GGT and OS was also observed. Subgroup analysis showed a possible interaction between GGT and blood glucose level. CONCLUSION: Serum GGT could be a potential indicator of survival in metastatic PDAC patients. Underlying mechanisms for this association should be investigated.


Assuntos
Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/mortalidade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , gama-Glutamiltransferase/sangue , Idoso , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/secundário , China , Feminino , Hospitais Universitários , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/secundário , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida
14.
BMC Cancer ; 19(1): 785, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391026

RESUMO

BACKGROUND: The prognostic role of serum alkaline phosphatase (ALP) has been found in several kinds of solid malignant tumor, but has never been extensively discussed in pancreatic cancer, especially through the application of dynamic survival model which incorporates the varying nature of ALP measurements. METHODS: We conducted a retrospective study which successfully collected 551 histopathologically confirmed pancreatic ductal adenocarcinoma (PDAC) patients from a cancer specialized hospital in southwest China. The association between variant ALP which measured during the whole survival period and the overall survival (OS) of PDAC patients was evaluated by using dynamic Anderson-Gill (AG) model. Exhaustive sensitivity analysis was performed by adopting continuous cut-offs of ALP. RESULTS: After adjusted for possible confounding of serum albumin, total bilirubin and leukocyte counts, AG model revealed that, serum ALP during the survival period was nonlinearly associated with the OS of PDAC: for resected patients, compared with those whose ALP results ranged within the first quartile (P75) quartiles were observed 1.14 (95% CI: 0.29-4.56), 3.93 (95% CI: 1.23-12.60), 3.87 (95% CI: 1.32-11.36) folds of death hazard; whereas in un-resected PDAC patients, the hazard ratios (HRs) were 1.15 (95% CI: 0.79-1.68), 1.92 (95% CI: 1.32-2.78), and 1.97 (95% CI: 1.30-2.98), respectively. Sensitivity analysis revealed that, for both resected and un-resected patients, the results of AG model were robust with regard to various cut-offs of ALP, and an increased ALP was in general associated with significantly increased hazard of death. CONCLUSION: Serum ALP during the survival period was significantly associated with the OS of PDAC patients, especially for resected early stage PDAC patients. Future studies with expanded sample size and refined prospective design should be implemented to corroborate our major findings. Besides, the underlying mechanism for this possible hazardous role of ALP should also be investigated.


Assuntos
Fosfatase Alcalina/sangue , Biomarcadores Tumorais , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Idoso , Terapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Resultado do Tratamento
15.
Nature ; 493(7433): 504-8, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23344360

RESUMO

Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 1929. In gaseous matter, an extremely low temperature can be obtained in diluted atomic gases by Doppler cooling, and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation. In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals, considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler. It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate, rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental and theoretical work, mainly on group-III-V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group-II-VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background absorption. Our findings suggest that, alternatively, group-II-VI semiconductors with strong exciton-LOP coupling could be harnessed to achieve laser cooling and open the way to optical refrigeration based on semiconductors.

16.
Appl Microbiol Biotechnol ; 103(7): 3215-3224, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30697665

RESUMO

The forest gap crucially influences forest environments, but its effects on local fungal community assembly are not fully understood. In this study, the fungal community in a weeping cypress forest was investigated as a function of forest gap locations based on forest clearing, using amplicon sequencing of the ITS2 region. The results showed that the fungal community significantly varied with the variations in soil properties related to gap location. Deterministic processes played pivotal roles in fungal community assembly, which was mainly driven by the temperature, moisture, available nitrogen, and microbial carbon in soil. Beta diversity of the fungal community increased from the gap center to the closed canopy. The relative abundances of dominant orders such as Microascales, Sordariales, and Chaetothyriales regularly varied as a function of gap location, and they were potential indicators for different gap locations. Based on network analysis, gap locations caused distinct co-occurrence patterns of fungal communities. This study shed light on the roles of forest gaps in the assembly of local fungal communities and provided additional strategies to manage forest ecosystems.


Assuntos
Florestas , Fungos/fisiologia , Micobioma/fisiologia , Microbiologia do Solo , Biodiversidade , Carbono/metabolismo , Cupressus , DNA Intergênico , Fungos/genética , Micobioma/genética , Nitrogênio/metabolismo , Temperatura , Árvores
17.
Nanotechnology ; 28(11): 115701, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28140355

RESUMO

High-quality Ge nanostructures are obtained by molecular beam epitaxy of Ge on Si(001) substrates at 200 °C and ex situ annealing at 400 °C. Their structural properties are comprehensively characterized by atomic force microscopy, transmission electron microscopy and Raman spectroscopy. It is disclosed that they are almost defect free except for some defects at the Ge/Si interface and in the subsequent Si capping layer. The misfit strain in the nanostructure is substantially relaxed. Dramatically strong photoluminescence (PL) from the Ge nanostructures is observed. Detailed analyses on the power- and temperature-dependent PL spectra, together with a self-consistent calculation, indicate the confinement and the high quantum efficiency of excitons within the Ge nanostructures. Our results demonstrate that the Ge nanostructures obtained via the present feasible route may have great potential in optoelectronic devices for monolithic optical-electronic integration circuits.

18.
Nano Lett ; 16(1): 367-73, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26666974

RESUMO

The recently emerged organohalide perovskites (e.g., CH3NH3PbI3) have drawn intense attention for high efficiency solar cells. However, with a considerable solubility in many solvents, these perovskites are not typically compatible with conventional lithography processes for more complicated device fabrications that are important for both fundamental studies and technological applications. Here, we report the creation of novel heterojunction devices based on perovskites and two-dimensional (2D) crystals by taking advantage of the layered characteristic of lead iodide (PbI2) and vapor-phase intercalation. We show that a graphene/perovskite/graphene vertical stack can deliver a highest photoresponsivity of ∼950 A/W and photoconductive gain of ∼2200, and a graphene/WSe2/perovskite/graphene heterojunction can display a high on/off ratio (∼10(6)) transistor behavior with distinct gate-tunable diode characteristics and open-circuit voltages. Such unique perovskite-2D heterostructures have significant potential for future optoelectronic research and can enable broad possibilities with compositional tunability of organohalide perovskites and the versatility offered by diverse 2D materials.

19.
Nanotechnology ; 27(16): 165705, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26963868

RESUMO

Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (∼14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet-visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices.

20.
Nano Lett ; 15(5): 3030-4, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25879371

RESUMO

Two-dimensional layered semiconductors such as molybdenum disulfide (MoS2) have attracted tremendous interest as a new class of electronic materials. However, there are considerable challenges in making reliable contacts to these atomically thin materials. Here we present a new strategy by using graphene as the back electrodes to achieve ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily tuned by a gate potential to enable a nearly perfect band alignment with MoS2. We demonstrate for the first time a transparent contact to MoS2 with zero contact barrier and linear output behavior at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator transition can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barriers found in conventional metal-contacted MoS2 devices. With further passivation by boron nitride (BN) encapsulation, we demonstrate a record-high extrinsic (two-terminal) field effect mobility up to 1300 cm(2)/(V s) in MoS2 at low temperature.


Assuntos
Compostos de Boro/química , Dissulfetos/química , Molibdênio/química , Nanotecnologia , Semicondutores , Eletrodos , Grafite/química , Nanoestruturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA