Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(45): 25933-25943, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34782909

RESUMO

The topologically close-packed (TCP) structural characteristics in a model metallic glass (MG) of Cu64.5Zr35.5 have been investigated by molecular dynamics simulations. A group of structural indicators based on the largest standard cluster (LaSC) have been correlated with the non-affine displacement (D2) of atoms, so as to reveal the hidden correlation between local structures and deformation behavior of Cu64.5Zr35.5 during compression. It was found that the 15 types of Top-10 LaSCs are all TCP-like ones, among which the most numerous icosahedron (Z12 and 1-Z12) decreases in population sharply and moderately during respectively the elastic and yield region of compression; while in the fluid-flow region, the number of all Top-10 LaSCs tends to be almost constant. Low-D2 atoms prefer to link with each other; while medium-D2 atoms act as transition structures between backbone areas and deformation areas. Most interestingly, the deformation response of TCP-like atoms is not only determined by its nearest neighbor characteristics, but also depends on the linkage with other atoms. In addition, icosahedral atoms with a higher degree of medium range five-fold symmetry (MRFFS) are more resistant to the stress-induced deformation. Therefore, the TCP characteristics, including its nearest neighbor feature and the inter-connection between TCP LaSCs, are closely related with the deformation behavior of atoms, especially the MRFFS (up to 5 layers) of icosahedral atoms. These findings shed new light on the understanding of the relationship between microstructure and deformation response of MGs, which will promote the development of deformation theory of MGs.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(9): 2487-91, 2015 Sep.
Artigo em Zh | MEDLINE | ID: mdl-26669153

RESUMO

Confocal three dimensional (3D) micro X-ray fluorescence (XRF) spectrometer based on a polycapillary focusing X-ray lens (PFXRL) in the excitation channel and a polycapillary parallel X-ray lens (PPXRL) in the detection channel was developed. The PFXRL and PPXRL were placed in a confocal configuration. This was helpful in improving the signal-to-noise ratio of the XRF spectra, and accordingly lowered the detection limitation of the XRF technology. The confocal configuration ensured that only the XRF signal from the confocal micro-volume overlapped by the output focal spot of the PFXRL and the input focal spot of the PPXRL could be detected by the detector. Therefore, the point-to-point information of XRF for samples could be obtained non-destructively by moving the sample located at the confocal position. The magnitude of the gain in power density of the PFXRL was 10(3). This let the low power conventional X-ray source be used in this confocal XRF, and, accordingly, decreased the requirement of high power X-ray source for the confocal XRF based on polycapillary X-ray optics. In this paper, we used the confocal 3D micro X-ray fluorescence spectrometer to non-destructively analyzed mineral samples and to carry out a 3D point-to-point elemental mapping scanning, which demonstrated the capabilities of confocal 3D micro XRF technology for non-destructive analysis elements composition and distribution for mineral samples. For one mineral sample, the experimental results showed that the area with high density of element of iron had high density of copper. To some extent, this reflected the growth mechanisms of the mineral sample. The confocal 3D micro XRF technology has potential applications in such fields like the analysis identification of ore, jade, lithoid utensils, "gamble stone" and lithoid flooring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA