Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; 19(34): e2300384, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37116117

RESUMO

Prussian blue analogs (PBAs) represent a crucial class of intercalation electrode materials for electrochemical water desalination. It is shown here that structural/compositional tailoring of PBAs, the nickel hexacyanoferrate (NiHCF) electrodes in particular, can efficiently modulate their capacitive deionization (CDI) performance (e.g., desalination capacity, cyclability, selectivity, etc.). Both the desalination capacity and the cyclability of NiHCF electrodes are highly dependent on their structural/compositional features such as crystallinity, morphology, hierarchy, and coatings. It is demonstrated that the CDI cell with hierarchically structured NiHCF nanoframe (NiHCF-NF) electrode exhibits a superior desalination capacity of 121.38 mg g-1 , a high charge efficiency of up to 82%, and a large capacity retention of 88% after 40 cycles intercalation/deintercalation. In addition, it is discovered that coating of carbon (C) film over NiHCF can lower its desalination capacity owing to the partial blockage of diffusion openings by the coated C film. Moreover, the hierarchical NiHCF-NF electrode also demonstrates a superior selectivity toward monovalent sodium ions (Na+ ) over divalent calcium (Ca2+ ) and magnesim (Mg2+ ) ions, allowing it to be a promising platform for preferential capturing Na+ ions from brines. Overall, the structural/compositional tailoring strategies would offer a viable option for the rational design of other intercalation electrode materials applied in CDI techniques.

2.
J Environ Manage ; 293: 112898, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082345

RESUMO

The co-occurrence of arsenic and fluoride in the water environment has led to many health concerns for living beings. Simultaneous removal of such ions is crucial to the safety of water resources, and biochar has been extensively engaged to address this issue. Here four magnetic biochars (mBCs) including pristine magnetic biochar and three aluminum (Al) and/or magnesium (Mg) oxides-anchored magnetic biochar (i.e., Al-mBC, Mg-mBC, and MgAl-mBC) were prepared via a facile pyrolysis method and then comprehensively evaluated as adsorbents for enhanced co-uptake of arsenate (AsV) and fluoride (F-) from synthetic water. The mBC shows a high specific surface area of 205 m2 g-1, which dropped to 116, 80, and 114 m2 g-1 upon the anchoring of Al, Mg, and Mg + Al, respectively. Our results suggest that the adsorption of either AsV or F- is highly pH-dependent, and pH 4-6 is the optimal range for maximum adsorption. The adsorption isotherm data indicate that the MgAl-mBC adsorbent outranks all other mBCs for co-uptake of both AsV and F-. The adsorption capacity maxima of MgAl-mBC are 34.45, and 21.59 mg g-1 for AsV and F-, respectively (pH = 5, T = 10 °C), also highly outstripping other biochars reported in the literature. The magnetic feature of these mBCs enables us to fast reclaim and regenerate the exhausted adsorbents by an external magnet and dilute NaOH. The Al- and Mg-anchored mBCs are expected to be used as highly efficient adsorbents for environmental remediation of waters contaminated by both AsV and F-.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Alumínio , Arseniatos , Carvão Vegetal , Fluoretos , Cinética , Óxido de Magnésio , Fenômenos Magnéticos , Água
3.
Small ; 13(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27813250

RESUMO

The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application.

4.
Molecules ; 21(5)2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27136514

RESUMO

Low color visibility and poor mechanical strength of polystyrene (PS) photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes) composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.


Assuntos
Nanotubos de Carbono/química , Fenômenos Biomecânicos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Fenômenos Ópticos , Propriedades de Superfície
5.
J Hazard Mater ; 476: 135108, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972202

RESUMO

Struvite crystallization, a promising technology for nutrient recovery from wastewater, is facing considerable challenges due to the presence of emerging contaminants such as microplastics (MPs) ubiquitously found in wastewater. Here, we investigate the roles of MPs and humic acid (HA) in struvite crystallization in batch and fluidized-bed reactors (FBRs) using synthetic and real wastewater with a Mg:N:P molar ratio of 1:3:(1-1.3) at an initial pH of 11. Batch reactor (BR) experiment results show that MPs expedited the nucleation and growth rates of struvite (e.g., the rate of crystal growth in the presence of 30 mg L-1 of polyethylene terephthalate (PET) was 1.43 times higher than that in the blank system), while HA hindered the formation of struvite. X-ray diffraction and the Rietveld refinement analysis revealed that the presence of MPs and HA can result in significant changes in phase compositions of the reclaimed precipitates, with over 80 % purity of struvite found in the precipitates from suspensions in the presence of 30 mg L-1 of MPs. Further characterizations demonstrated that MPs act as seeds of struvite nucleation, spurring the formation of well-defined struvite, while HA favors the formation of newberyite rather than struvite in both reactors. These findings highlight the need for a more comprehensive understanding of the interactions between emerging contaminants and struvite crystallization processes to optimize nutrient recovery strategies for mitigating their adverse impact on the quality and yield of struvite-based fertilizers. ENVIRONMENTAL IMPLICATION: The presence of microplastics in wastewater poses a significant challenge to struvite crystallization for nutrient recovery, as it accelerates nucleation and growth rates of struvite crystals. This can lead to changes in the phase compositions of the reclaimed precipitates, with implications for the quality and yield of struvite-based fertilizers. Additionally, the presence of humic acid hinders the formation of struvite, favoring the formation of other minerals like newberyite. Understanding the interactions between emerging contaminants and struvite crystallization processes is crucial for optimizing nutrient recovery strategies and mitigating the environmental impact of these contaminants on water quality and struvite-based fertilizers.

6.
Environ Pollut ; 360: 124685, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111531

RESUMO

Microplastics (MPs) have aroused growing environmental concerns due to their biotoxicity and vital roles in accelerating the spread of toxic elements. Illuminating the interactions between MPs and heavy metals (HMs) is crucial for understanding the transport and fate of HM-loaded MPs in specific environmentally relevant scenarios. Herein, the adsorption of copper (Cu2+) and zinc (Zn2+) ions over polyethylene (PE) and polyethylene terephthalate (PET) particulates before and after heat persulfate oxidation (HPO) treatment was comprehensively evaluated in simulated and real swine wastewaters. The effects of intrinsic properties (i.e., degree of weathering, size, type) of MPs and environmental factors (i.e., pH, ionic strength, and co-occurring species) on adsorption were investigated thoroughly. It was observed that HPO treatment expedites the fragmentation of pristine MPs, and renders MPs with a variety of oxygen-rich functional groups, which are likely to act as new active sites for binding both HMs. The adsorption of both HMs is pH- and ionic strength-dependent at a pH of 4-6. Co-occurring species such as humic acid (HA) and tetracycline (TC) appear to enhance the affinity of both aged MPs for Cu2+ and Zn2+ ions via bridging complexation. However, co-occurring nutrient species (e.g., phosphate and ammonia) demonstrate different impacts on the adsorption, improving uptake of Cu2+ by precipitation while lowering affinity for Zn2+ owing to the formation of soluble zinc-ammonia complex. Spectroscopic analysis indicates that the dominant adsorption mechanism mainly involves electrostatic interactions and surface complexation. These findings provided fundamental insights into the interactions between aged MPs and HMs in swine wastewaters and might be extended to other nutrient-rich wastewaters.

7.
Front Bioeng Biotechnol ; 11: 1156953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911188

RESUMO

D-allulose is a high-value rare sugar with many health benefits. D-allulose market demand increased dramatically after approved as generally recognized as safe (GRAS). The current studies are predominantly focusing on producing D-allulose from either D-glucose or D-fructose, which may compete foods against human. The corn stalk (CS) is one of the main agricultural waste biomass in the worldwide. Bioconversion is one of the promising approach to CS valorization, which is of significance for both food safety and reducing carbon emission. In this study, we tried to explore a non-food based route by integrating CS hydrolysis with D-allulose production. Firstly we developed an efficient Escherichia coli whole-cell catalyst to produce D-allulose from D-glucose. Next we hydrolyzed CS and achieved D-allulose production from the CS hydrolysate. Finally we immobilized the whole-cell catalyst by designing a microfluidic device. Process optimization improved D-allulose titer by 8.61 times, reaching 8.78 g/L from CS hydrolysate. With this method, 1 kg CS was finally converted to 48.87 g D-allulose. This study validated the feasibility of valorizing corn stalk by converting it to D-allulose.

8.
ACS Appl Mater Interfaces ; 14(41): 46646-46656, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36210636

RESUMO

Layered manganese oxides (LMOs) have recently been demonstrated to be one of the most promising redox-active material platforms for electrochemical removal of heavy metal ions from solution via capacitive deionization (CDI). However, the impact of interlayer spacing of LMOs on the deionization performance of electrodes in a hybrid capacitive deionization (HCDI) system with an LMO cathode and a carbon anode (i.e., LMO/C electrodes), and their phase transformation behaviors, particularly during the desalination operations, have yet to be extensively evaluated. In this study, we thoroughly evaluate Mg-buserite obtained by ion exchange of fresh Na-birnessite and Na- and K-birnessite as HCDI electrodes to remove copper ions (Cu2+) from saline solutions. Among the three LMO/C electrodes, the Mg-buserite/C (MgB/C) electrodes demonstrate the best deionization performance in terms of salt adsorption capacity (SAC), electrosorption rate, and cycling stability, followed by K-birnessite/C (KB/C) and Na-birnessite/C (NaB/C). More importantly, MgB/C exhibits the highest Cu2+ ion adsorption capacity (IAC) of 89.3 mg Cu2+ per gram electrode materials at a cell voltage of 1.2 V in 500 mg L-1 CuCl2 solution, with an IAC retention as high as 96.3% after 60 charge/discharge cycles. Given that electrosorption of Cu2+ ions is often competed by alkali and alkaline earth metal ions, our data reveal that the MgB/C electrodes demonstrate selectivities of 4.7, 7.7, and 8.1 for Cu2+ over Na+, Ca2+, and Mg2+, respectively. Moreover, X-ray diffraction and spectroscopic analyses show that the enhanced deionization performance and preference for Cu2+ are mainly attributed to the expanded interlayer spacing of LMO minerals. This study provides a promising strategy for tailoring LMO minerals for improving their electrosorption capacity and preference for copper ions from a multivalent-ion solution via an HCDI platform.

9.
Chemosphere ; 306: 135636, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35810868

RESUMO

Global mining activities produce thousands of millions of toxic-bearing mine tailing (MT) wastes each year. Storage of the mine tailings not only encroaches upon large areas of cropland but also arouses additional ecological and environmental risks. Herein we demonstrate that geopolymerization of a mixture of the toxic-bearing mine tailings and the coal fly ash (FA) can effectively immobilize exogenous arsenic (As) species in addition to inherent As from the raw materials. The geopolymers also possess high compressive strengths (e.g., >25 MPa for specimens with 54 wt% FA and activated with 10 M sodium hydroxide (NaOH)), allowing them to be further used as low-carbon, cement-free building materials. The geopolymer strength was found to depend clearly upon the NaOH concentration, the FA content, and the curing time, with the maximum being 37.07 MPa for a specimen with 54 wt% FA, 0.03 wt% As, activated with 10 M NaOH and cured for 28 days. Leaching tests showed that all specimens achieved an immobilization efficiency as high as 95.4% toward As, and that both the short-term and long-term leachabilities of all toxic elements are far below the standard maximum contaminant levels. Microstructural analyses indicate that calcite, calcium silicate, and calcium silicate hydroxide are likely to play a crucial role in immobilizing As species and heavy metals of concern in the geopolymer matrixes. Given the superior mechanical strengths and long-term stabilities, the FA/MT-based geopolymers demonstrate a promising low-carbon material for both the remediation of As-bearing lands and the construction industry.


Assuntos
Arsênio , Cinza de Carvão , Carbono , Cinza de Carvão/química , Polímeros/química , Hidróxido de Sódio
10.
Front Immunol ; 12: 793375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970271

RESUMO

Background: Mitochondrial DNA (mtDNA) profiles and contributions of mtDNA variants to CD4+T-cell recovery in Euramerican people living with HIV (PLWH) may not be transferred to East-Asian PLWH, highlighting the need to consider more regional studies. We aimed to identify mtDNA characteristics and mutations that explain the variability of short-term CD4+T-cell recovery in East-Asian PLWH. Method: Eight hundred fifty-six newly reported antiretroviral therapy (ART)-naïve Chinese PLWH from the Comparative HIV and Aging Research in Taizhou (CHART) cohort (Zhejiang Province, Eastern China) were enrolled. MtDNA was extracted from peripheral whole blood of those PLWH at HIV diagnosis, amplified, and sequenced using polymerase chain reaction and gene array. Characterization metrics such as mutational diversity and momentum were developed to delineate baseline mtDNA mutational patterns in ART-naïve PLWH. The associations between mtDNA genome-wide single nucleotide variants and CD4+T-cell recovery after short-term (within ~48 weeks) ART in 724 PLWH were examined using bootstrapping median regressions. Results: Of 856 participants, 74.18% and 25.82% were male and female, respectively. The median age was 37 years; 94.51% were of the major Han ethnicity, and 69.04% and 28.62% were of the heterosexual and homosexual transmission, respectively. We identified 2,352 types of mtDNA mutations and mtDNA regions D-loop, ND5, CYB, or RNR1 with highest mutational diversity or volume. Female PLWH rather than male PLWH at the baseline showed remarkable age-related uptrends of momentum and mutational diversity as well as correlations between CD4+T <200 (cells/µl) and age-related uptrends of mutational diversity in many mtDNA regions. After adjustments of important sociodemographic and clinical variables, m.1005T>C, m.1824T>C, m.3394T>C, m.4491G>A, m.7828A>G, m.9814T>C, m.10586G>A, m.12338T>C, m.13708G>A, and m.14308T>C (at the Bonferroni-corrected significance) were negatively associated with short-term CD4+T-cell recovery whereas m.93A>G, m.15218A>G, and m.16399A>G were positively associated with short-term CD4+T-cell recovery. Conclusion: Our baseline mtDNA characterization stresses the attention to East-Asian female PLWH at risk of CD4+T-cell loss-related aging and noncommunicable chronic diseases. Furthermore, mtDNA variants identified in regression analyses account for heterogeneity in short-term CD4+T-cell recovery of East-Asian PLWH. These results may help individualize the East-Asian immune recovery strategies under complicated HIV management caused by CD4+T-cell loss.


Assuntos
Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , DNA Mitocondrial , Infecções por HIV/genética , Infecções por HIV/imunologia , Mutação , Adulto , Alelos , Terapia Antirretroviral de Alta Atividade , Feminino , Genoma Microbiano , Genômica/métodos , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1 , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Carga Viral , Adulto Jovem
11.
J Hazard Mater ; 388: 121734, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31796348

RESUMO

Three core/shell/shell MgAl-LDH composites using Fe3O4 microspheres as the core, a SiO2 matrix as the inner layer and a MgAl-LDH layer as the outer shell have been synthesized for the removal and recovery of phosphate and fluoride from water by a magnetic separation technique. The synthetic mesoporous MgAl-LDH composites show good magnetic separability, well-defined pore distributions, and have specific surface areas of 73 m2 g-1, 168 m2 g-1, and 137 m2 g-1 for Fe3O4@SiO2@LDH350, Fe3O4@SiO2@mLDH350, and Fe3O4@mSiO2@mLDH350, respectively. The adsorption isotherms of both phosphate and fluoride on these MgAl-LDH composites can be well fitted with the Langmuir model. The maximum adsorption capacities of 57.07 mg g-1 and 28.51 mg g-1 were obtained on Fe3O4@mSiO2@mLDH350 for phosphate and fluoride, respectively, much higher than those of other LDH-type materials. The adsorbed phosphate and fluoride could be successfully recovered by NaNO3-NaOH solution, and the regenerated MgAl-LDH composites could be reused for phosphate and fluoride removal. Owing to their high adsorption capacities of both phosphate and fluoride, easy magnetic separation from solution, and good reusability, the mesoporous MgAl-LDH composites are expected to have potential applications in removal or recovery of fluoride or phosphate from water.

12.
J Hazard Mater ; 334: 212-222, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28414999

RESUMO

An ordered mesoporous Mg-Al layered double hydroxide (meso-LDH350) with a fairly high Brunauer-Emmett-Teller (BET) surface area (126m2g-1) has been facilely synthesized and then evaluated for the adsorptive removal of bromate from aqueous solutions. Adsorbents were characterized by a variety of techniques (e.g., XRD, FTIR, SEM, TG-DSC, N2 physisorption, XPS, etc.). The adsorption studies indicated that the presence of background electrolytes and competitive anions can obviously repress the uptake of bromate on LDHs. The adsorption isotherms agree well with the Langmuir model, giving a maximum adsorption capacity of 59.34mgg-1 (pH 7.5, 10°C) for meso-LDH350, which is much higher than other LDH-type adsorbents reported in literature. The adsorption kinetic data can be well fitted with the pseudo-second-order rate model. Based on the macroscopic and microscopic studies, bromate adsorption on meso-LDH350 was associated with two mechanisms: the reconstruction of the layered structures of meso-LDH350 and the anion-exchange between bromate and the intercalated anions.

13.
J Hazard Mater ; 296: 221-229, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25929674

RESUMO

Fe-doped cryptomelanes were synthesized by refluxing at ambient pressure, followed by characterization with multiple techniques and test in photocatalytic degradation of phenol. The introduction of Fe(III) into the structure of cryptomelane results in a decrease in particle size and the contents of Mn and K(+), and an increase in the Mn average oxidation state (AOS), specific surface area and UV-vis light absorption ability. Mn and Fe K-edge extended X-ray absorption fine structure spectroscopy analysis indicates that some Fe(III) is incorporated into the framework of cryptomelane by replacing Mn(III) while the remaining Fe(3+) is adsorbed in the tunnel cavity. These Fe-doped cryptomelanes have significantly improved the photocatalytic degradation rate of phenol, with the sample of ∼3.04 wt.% Fe doping being the most reactive and achieving a degradation rate of 36% higher than that of the un-doped one. The enhanced reactivity can be ascribed to the increase in the coherent scattering domain size of the crystals, Mn AOS and light absorption, as well as the presence of sufficient K(+) in the tunnel. The results imply that metal doping is an effective way to improve the performance of cryptomelane in pollutants removal and has the potential for modification of Mn oxide materials.


Assuntos
Compostos Férricos/química , Compostos de Manganês/síntese química , Óxidos/síntese química , Fenol/química , Fotólise , Catálise , Luz , Compostos de Manganês/química , Microscopia Eletrônica de Varredura , Óxidos/química , Tamanho da Partícula , Fenol/efeitos da radiação , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Difração de Raios X
14.
Res Vet Sci ; 94(3): 449-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23178049

RESUMO

In order to investigate the expression of mRNA and protein for synaptophysin (SYP) in bovine corpus luteum (CL) during different stages of pregnancy, we chose Holstein cows during various pregnancy stages. The CL was divided into two parts, then immunohistochemical streptavidin-perosidase and RT-PCR were used to determine the levels of protein and mRNA for SYP respectively. SYP immunoreactive products mainly located in large luteal cells; much less or no immunoreactivity was found in small luteal cells. The expression levels of SYP were different in various stages of pregnancy. In the CL of mid pregnancy, the levels of protein and mRNA for SYP were both significantly higher than those in early and late stage of pregnancy (P<0.05). After parturition, compared with late stage of pregnancy, the protein level of SYP decreased (P<0.05), but its mRNA increased (P<0.05). In conclusion, SYP has the strongest expression in mid stage of pregnancy, and its regular expression in bovine CL indicates that SYP may play important roles in maintaining the function of bovine CL and in the regulation of production.


Assuntos
Corpo Lúteo/metabolismo , Prenhez/metabolismo , Sinaptofisina/biossíntese , Animais , Bovinos , Corpo Lúteo/química , Corpo Lúteo/fisiologia , Feminino , Reação em Cadeia da Polimerase/veterinária , Gravidez , Prenhez/fisiologia , RNA Mensageiro/metabolismo , Sinaptofisina/análise , Sinaptofisina/fisiologia
15.
Gene ; 503(2): 222-8, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22575614

RESUMO

Neuron-specific enolase (NSE) is the key molecular marker for diffuse neuroendocrine system (DNES) cells, its expression in the pregnant corpus luteum (CL) of dairy goats was studied by the immunofluorescence method and the ultra structural characteristics of luteal cells were detected by the electron microscopy to identify the existence of DNES cells in the pregnant CL of dairy goats. Besides, the coding sequence of dairy goats NSE gene was cloned and its biological information was analyzed. Results revealed that NSE immunopositive cells exhibited widespread cytoplasmic staining throughout the whole pregnant CL. In addition, these cells showed typical characteristics of DNES cells in the electron microscopy. These results suggested that many DNES cells exist in the pregnant CL of dairy goats. Meanwhile, we identified the coding sequence of dairy goats NSE (GenBank Accession No. JN887466). Its nucleotide sequence homology was found to be 97.9%, 89.3%, 90% and 92.6%, respectively, compared with that of Bos taurus, Rattus norvegicus, Mus musculus and Homo sapiens, while the amino acid sequence homology was 99.1%, 97%, 97.2% and 98.2% respectively. These results first showed that the functional amino acids coded by the NSE gene were highly conserved in Caprine, B. taurus, R. norvegicus, M. musculus and H. sapiens. It was implied that the gene NSE in dairy goats had close homology to that of NSE of other species. Our findings demonstrated the possible existence of DNES cells in pregnant CL, providing new clue for further understanding of interactions between the neuroendocrine and reproductive systems. Characterization of gene sequence of dairy goats NSE will enable us to synthesize interference RNA for further study on the role of NSE on the formation, function and apoptosis of pregnant CL in dairy goats.


Assuntos
Corpo Lúteo/enzimologia , Cabras/genética , Fosfopiruvato Hidratase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Corpo Lúteo/ultraestrutura , Feminino , Genótipo , Cabras/metabolismo , Dados de Sequência Molecular , Sistemas Neurossecretores/citologia , Gravidez , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA