Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656412

RESUMO

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Assuntos
Amilose , Edição de Genes , Hordeum , Proteínas de Plantas , Sintase do Amido , Amilose/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edição de Genes/métodos , Sintase do Amido/genética , Sintase do Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , beta-Glucanas/metabolismo , Plantas Geneticamente Modificadas , Solubilidade
2.
Plant Biotechnol J ; 22(7): 1989-2006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38412139

RESUMO

Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.


Assuntos
Brassinosteroides , Grão Comestível , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Açúcares/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudo de Associação Genômica Ampla
3.
Plant Cell ; 33(9): 3004-3021, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34129038

RESUMO

Nitrate is both an important nutrient and a critical signaling molecule that regulates plant metabolism, growth, and development. Although several components of the nitrate signaling pathway have been identified, the molecular mechanism of nitrate signaling remains unclear. Here, we showed that the growth-related transcription factors HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH IBH1 (HBI1) and its three closest homologs (HBIs) positively regulate nitrate signaling in Arabidopsis thaliana. HBI1 is rapidly induced by nitrate through NLP6 and NLP7, which are master regulators of nitrate signaling. Mutations in HBIs result in the reduced effects of nitrate on plant growth and ∼22% nitrate-responsive genes no longer to be regulated by nitrate. HBIs increase the expression levels of a set of antioxidant genes to reduce the accumulation of reactive oxygen species (ROS) in plants. Nitrate treatment induces the nuclear localization of NLP7, whereas such promoting effects of nitrate are significantly impaired in the hbi-q and cat2 cat3 mutants, which accumulate high levels of H2O2. These results demonstrate that HBI-mediated ROS homeostasis regulates nitrate signal transduction through modulating the nucleocytoplasmic shuttling of NLP7. Overall, our findings reveal that nitrate treatment reduces the accumulation of H2O2, and H2O2 inhibits nitrate signaling, thereby forming a feedback regulatory loop to regulate plant growth and development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Homeostase , Nitratos/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
J Integr Plant Biol ; 66(1): 12-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103031

RESUMO

The plasma membrane-localized phytosulfokine receptor-like protein TaRLK-6A, interacting with TaSERK1, positively regulates the expression of defense-related genes in wheat, consequently promotes host resistance to Fusarium crown rot.


Assuntos
Fusarium , Triticum , Triticum/genética , Fusarium/fisiologia , Doenças das Plantas/genética
5.
Plant Biotechnol J ; 21(4): 839-853, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597709

RESUMO

Phased, small interfering RNAs (phasiRNAs) are important for plant anther development, especially for male sterility. PhasiRNA biogenesis is dependent on genes like RNA polymerase 6 (RDR6), DICER-LIKE 4 (DCL4), or DCL5 to produce 21- or 24 nucleotide (nt) double-strand small RNAs. Here, we generated mutants of DCL4, DCL5 and RDR6 using CRISPR/Cas9 system and studied their effects on plant reproductive development and phasiRNA production in wheat. We found that RDR6 mutation caused sever consequence throughout plant development starting from seed germination and the dcl4 mutants grew weaker with thorough male sterility, while dcl5 plants developed normally but exhibited male sterility. Correspondingly, DCL4 and DCL5, respectively, specified 21- and 24-nt phasiRNA biogenesis, while RDR6 contributed to both. Also, the three key genes evolved differently in wheat, with TaDCL5-A/B becoming non-functioning and TaRDR6-A being lost after polyploidization. Furthermore, we found that PHAS genes (phasiRNA precursors) identified via phasiRNAs diverged rapidly among sub-genomes of polyploid wheat. Despite no similarity being found among phasiRNAs of grasses, their targets were enriched for similar biological functions. In light of the important roles of phasiRNA pathways in gametophyte development, genetic dissection of the function of key genes may help generate male sterile lines suitable for hybrid wheat breeding.


Assuntos
Infertilidade Masculina , Triticum , Masculino , Humanos , Triticum/genética , Triticum/metabolismo , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/genética , Mutagênese/genética , Plantas/genética , Infertilidade Masculina/genética , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas
6.
Plant J ; 108(3): 829-840, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492155

RESUMO

High-molecular-weight glutenin subunits (HMW-GS) are major components of seed storage proteins (SSPs) and largely determine the processing properties of wheat (Triticum aestivum) flour. HMW-GS are encoded by the GLU-1 loci and regulated at the transcriptional level by interaction between cis-elements and transcription factors (TFs). We recently validated the function of conserved cis-regulatory modules (CCRMs) in GLU-1 promoters, but their interacting TFs remained uncharacterized. Here we identified a CCRM-binding NAM-ATAF-CUC (NAC) protein, TaNAC100, through yeast one-hybrid (Y1H) library screening. Transactivation assays demonstrated that TaNAC100 could bind to the GLU-1 promoters and repress their transcription activity in tobacco (Nicotiana benthamiana). Overexpression of TaNAC100 in wheat significantly reduced the contents of HMW-GS and other SSPs as well as total seed protein. This was confirmed by transcriptome analyses. Conversely, enhanced expression of TaNAC100 increased seed starch contents and expression of key starch synthesis-related genes, such as TaGBSS1 and TaSUS2. Y1H assays also indicated TaNAC100 binding with the promoters of TaGBSS1 and TaSUS2. These results suggest that TaNAC100 functions as a hub controlling seed protein and starch synthesis. Phenotypic analyses showed that TaNAC100 overexpression repressed plant height, increased heading date, and promoted seed size and thousand kernel weight. We also investigated sequence variations in a panel of cultivars, but did not identify significant association of TaNAC100 haplotypes with agronomic traits. The findings not only uncover a useful gene for wheat breeding but also provide an entry point to reveal the mechanism underlying metabolic balance of seed storage products.


Assuntos
Proteínas de Plantas/genética , Sementes/metabolismo , Amido/biossíntese , Triticum/fisiologia , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Haplótipos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Amido/genética
7.
New Phytol ; 233(2): 738-750, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655489

RESUMO

Rht-B1b and Rht-D1b, the 'Green Revolution' (GR) genes, greatly improved yield potential of wheat under nitrogen fertilizer application, but reduced coleoptile length, seedling vigor and grain weight. Thus, mining alternative reduced plant height genes without adverse effects is urgently needed. We isolated the causal gene of Rht24 through map-based cloning and characterized its function using transgenic, physiobiochemical and transcriptome assays. We confirmed genetic effects of the dwarfing allele Rht24b with an association analysis and also traced its origin and distribution. Rht24 encodes a gibberellin (GA) 2-oxidase, TaGA2ox-A9. Rht24b conferred higher expression of TaGA2ox-A9 in stems, leading to a reduction of bioactive GA in stems but an elevation in leaves at the jointing stage. Strikingly, Rht24b reduced plant height, but had no yield penalty; it significantly increased nitrogen use efficiency, photosynthetic rate and the expression of related genes. Evolutionary analysis demonstrated that Rht24b first appeared in wild emmer and was detected in more than half of wild emmer and wheat accessions, suggesting that it underwent both natural and artificial selection. These findings uncover an important genetic resource for wheat breeding and also provide clues for dissecting the regulatory mechanisms underlying GA-mediated morphogenesis and yield formation.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Genes de Plantas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
8.
J Integr Plant Biol ; 63(5): 902-912, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33210841

RESUMO

Nitrate is the main source of nitrogen for plants but often distributed heterogeneously in soil. Plants have evolved sophisticated strategies to achieve adequate nitrate by modulating the root system architecture. The nitrate acquisition system is triggered by the short mobile peptides C-TERMINALLY ENCODED PEPTIDES (CEPs) that are synthesized on the nitrate-starved roots, but induce the expression of nitrate transporters on the other nitrate-rich roots through an unclear signal transduction pathway. Here, we demonstrate that the transcription factors HBI1 and TCP20 play important roles in plant growth and development in response to fluctuating nitrate supply. HBI1 physically interacts with TCP20, and this interaction was enhanced by the nitrate starvation. HBI1 and TCP20 directly bind to the promoters of CEPs and cooperatively induce their expression. Mutation in HBIs and/or TCP20 resulted in impaired systemic nitrate acquisition response. Our solid genetic and molecular evidence strongly indicate that the HBI1-TCP20 module positively regulates the CEPs-mediated systemic nitrate acquisition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais
9.
BMC Genomics ; 21(1): 200, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131726

RESUMO

BACKGROUND: PhasiRNAs (phased secondary siRNAs) play important regulatory roles in the development processes and biotic or abiotic stresses in plants. Some of phasiRNAs involve in the reproductive development in grasses, which include two categories, 21-nt (nucleotide) and 24-nt phasiRNAs. They are triggered by miR2118 and miR2275 respectively, in premeiotic and meiotic anthers of rice, maize and other grass species. Wheat (Triticum aestivum) with three closely related subgenomes (subA, subB and subD), is a model of allopolyploid in plants. Knowledge about the role of phasiRNAs in the inflorescence development of wheat is absent until now, and the evolution of PHAS loci in polyploid plants is also unavailable. RESULTS: Using 261 small RNA expression datasets from various tissues, a batch of PHAS (phasiRNA precursors) loci were identified in the young spike of wheat, most of which were regulated by miR2118 and miR2275 in their target site regions. Dissection of PHAS and their trigger miRNAs among the diploid (AA and DD), tetraploid (AABB) and hexaploid (AABBDD) genomes of Triticum indicated that distribution of PHAS loci were dominant randomly in local chromosomes, while miR2118 was dominant only in the subB genome. The diversity of PHAS loci in the three subgenomes of wheat and their progenitor genomes (AA, DD and AABB) suggested that they originated or diverged at least before the occurrence of the tetraploid AABB genome. The positive correlation between the PHAS loci or the trigger miRNAs and the ploidy of genome indicated the expansion of genome was the major drive force for the increase of PHAS loci and their trigger miRNAs in Triticum. In addition, the expression profiles of the PHAS transcripts suggested they responded to abiotic stresses such as cold stress in wheat. CONCLUSIONS: Altogether, non-coding phasiRNAs are conserved transcriptional regulators that display quick plasticity in Triticum genome. They may be involved in reproductive development and abiotic stress in wheat. It could be referred to molecular research on male reproductive development in Triticum.


Assuntos
MicroRNAs/genética , RNA Interferente Pequeno/genética , Triticum/crescimento & desenvolvimento , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Poliploidia , RNA de Plantas/genética , Triticum/genética
11.
BMC Genomics ; 20(1): 29, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30630423

RESUMO

BACKGROUND: Hexaploid bread wheat (Triticum aestivum L) arose by two polyploidisation events from three diploid species with homoeologous genomes. Nullisomic-tetrasomic (nulli-tetra or NT) lines are aneuploid wheat plants lacking two and adding two of six homoeologous chromosomes. These plants can grow normally, but with significantly morphological variations because the adding two chromosomes or the remaining four chromosomes compensate for those absent. Despite these interesting phenomena, detailed molecular mechanisms underlying dosage deletion and compensation in these useful genetic materials have not been determined. RESULTS: By sequencing the transcriptomes of leaves in two-week-old seedlings, we showed that the profiles of differentially expressed genes between NT stocks for homoeologous group 7 and the parent hexaploid Chinese Spring (CS) occurred throughout the whole genome with a subgenome and chromosome preference. The deletion effect of nulli-chromosomes was compensated partly by the tetra-chromosomes via the dose level of expressed genes, according to the types of homoeologous genes. The functions of differentially regulated genes primarily focused on carbon metabolic process, photosynthesis process, hormone metabolism, and responding to stimulus, and etc., which might be related to the defective phenotypes that included reductions in plant height, flag leaf length, spikelet number, and kernels per spike. CONCLUSIONS: The perturbation of the expression levels of transcriptional genes among the NT stocks for homoeologous group 7 demonstrated the gene dosage effect of the subgenome at the genome-wide level. The gene dosage deletion and compensation can be used as a model to elucidate the functions of the subgenomes in modern polyploid plants.


Assuntos
Pão , Dosagem de Genes , Expressão Gênica , Poliploidia , Transcriptoma , Triticum/genética , Aneuploidia , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Plântula/genética
12.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650550

RESUMO

Biotic stresses do damage to the growth and development of plants, and yield losses for some crops. Confronted with microbial infections, plants have evolved multiple defense mechanisms, which play important roles in the never-ending molecular arms race of plant⁻pathogen interactions. The complicated defense systems include pathogen-associated molecular patterns (PAMP) triggered immunity (PTI), effector triggered immunity (ETI), and the exosome-mediated cross-kingdom RNA interference (CKRI) system. Furthermore, plants have evolved a classical regulation system mediated by miRNAs to regulate these defense genes. Most of the genes/small RNAs or their regulators that involve in the defense pathways can have very rapid evolutionary rates in the longitudinal and horizontal co-evolution with pathogens. According to these internal defense mechanisms, some strategies such as molecular switch for the disease resistance genes, host-induced gene silencing (HIGS), and the new generation of RNA-based fungicides, have been developed to control multiple plant diseases. These broadly applicable new strategies by transgene or spraying ds/sRNA may lead to reduced application of pesticides and improved crop yield.


Assuntos
Evolução Molecular , Genes de Plantas , Doenças das Plantas/genética , Resistência à Doença/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Fisiológico/genética
13.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480315

RESUMO

The CRISPR/Cas9 system has been successfully used in hexaploid wheat. Although it has been reported that the induced mutations can be passed to the next generation, gene editing and transmission patterns in later generations still need to be studied. In this study, we demonstrated that the CRISPR/Cas9 system could achieve efficient mutagenesis in five wheat genes via Agrobacterium-mediated transformation of an sgRNA targeting the D genome, an sgRNA targeting both the A and B homologues and three tri-genome guides targeting the editing of all three homologues. High mutation rates and putative homozygous or biallelic mutations were observed in the T0 plants. The targeted mutations could be stably inherited by the next generation, and the editing efficiency of each mutant line increased significantly across generations. The editing types and inheritance of targeted mutagenesis were similar, which were not related to the targeted subgenome number. The presence of Cas9/sgRNA could cause new mutations in subsequent generations, while mutated lines without Cas9/sgRNA could retain the mutation type. Additionally, off-target mutations were not found in sequences that were highly homologous to the selected sgRNA sequences. Overall, the results suggested that CRISPR/Cas9-induced gene editing via Agrobacterium-mediated transformation plays important roles in wheat genome engineering.


Assuntos
Agrobacterium/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Padrões de Herança/genética , Mutagênese/genética , Triticum/genética , Sequência de Bases , Edição de Genes , Genes de Plantas , Vetores Genéticos/metabolismo , Genótipo , Taxa de Mutação , RNA Guia de Cinetoplastídeos/genética
14.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31248042

RESUMO

Disease resistance genes encoding proteins with nucleotide binding sites and Leucine-Rich Repeat (NB-LRR) domains include many members involved in the effector-triggered immunity pathway in plants. The transcript levels of these defense genes are negatively regulated by diverse microRNAs (miRNAs) in angiosperms and gymnosperms. In wheat, using small RNA expression datasets and degradome datasets, we identified five miRNA families targeting NB-LRR defense genes in monocots, some of which arose in the Triticeae species era. These miRNAs regulate different types of NB-LRR genes, most of them with coil-coiled domains, and trigger the generation of secondary small interfering RNAs (siRNA) as a phased pattern in the target site regions. In addition to acting in response to biotic stresses, they are also responsive to abiotic stresses such as heat, drought, salt, and light stress. Their copy number and expression variation in Triticeae suggest a rapid birth and death frequency. Altogether, non-conserved miRNAs as conserved transcriptional regulators in gymnosperms and angiosperms regulating the disease resistance genes displayed quick plasticity including the variations of sequences, gene copy number, functions, and expression level, which accompanied with NB-LRR genes may be tune-regulated to plants in natural environments with various biotic and abiotic stresses.


Assuntos
Resistência à Doença/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Poaceae/genética , Sítios de Ligação , Perfilação da Expressão Gênica , MicroRNAs/química , Motivos de Nucleotídeos , Filogenia , Poaceae/classificação , Matrizes de Pontuação de Posição Específica , Interferência de RNA , Estresse Fisiológico , Triticum/genética
15.
BMC Plant Biol ; 18(1): 302, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477421

RESUMO

BACKGROUND: Recently, the CRISPR/Cas9 system has been widely used to precisely edit plant genomes. Due to the difficulty in Agrobacterium-mediated genetic transformation of wheat, the reported applications in CRISPR/Cas9 system were all based on the biolistic transformation. RESULTS: In the present study, we efficiently applied targeted mutagenesis in common wheat (Triticum aestivum L.) protoplasts and transgenic T0 plants using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Seven target sites in three genes (Pinb, waxy and DA1) were selected to construct individual expression vectors. The activities of the sgRNAs were evaluated by transforming the constructed vectors into wheat protoplasts. Mutations in the targets were detected by Illumina sequencing. Genome editing, including insertions or deletions at the target sites, was found in the wheat protoplast cells. The highest mutation efficiency was 6.8% in the DA1 gene. The CRISPR/Cas9 binary vector targeting the DA1 gene was then transformed into common wheat plants by Agrobacterium tumefaciens-mediated transformation, resulting in efficient target gene editing in the T0 generation. Thirteen mutant lines were generated, and the mutation efficiency was 54.17%. Mutations were found in the A and B genomes of the transgenic plants but not in the D genome. In addition, off-target mutations were not detected in regions that were highly homologous to the sgRNA sequences. CONCLUSIONS: Our results showed that our Agrobacterium-mediated CRISPR/Cas9 system can be used for targeted mutations and facilitated wheat genetic improvement.


Assuntos
Agrobacterium tumefaciens/genética , Sistemas CRISPR-Cas , Marcação de Genes , Mutagênese , Triticum/genética , Genes de Plantas
16.
Hereditas ; 155: 33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305809

RESUMO

BACKGROUND: This study aimed to validate the function of CKX gene on grain numbers in wheat. METHODS: we constructed and transformed a RNA interference expression vector of TaCKX2.4 in bread wheat line NB1. Southern blotting analysis was used to select transgenic plants with single copy. The expression of TaCKX2.4 gene was estimated by Quantitative real-time PCR (qRT-PCR) analysis. Finally, the relation between expression of TaCKX2.4 gene and grain numbers was validated. RESULTS: Totally, 20 positive independent events were obtained. Homozygous lines from 5 events with a single copy of transformed gene each were selected to evaluate the expression of TaCKX2.4 and grain numbers per spike in T3 generation. Compared with the control NB1, the average grain numbers per spike significantly increased by 12.6%, 8.3%, 6.5% and 5.8% in the T3 lines JW39-3A, JW1-2B, JW1-1A and JW5-1A, respectively. CONCLUSION: Our study indicated that the expression level of TaCKX2.4 was negatively correlated with the grain number per spike, indicating that the reduced expression of TaCKX2.4 increased grain numbers per spike in wheat.


Assuntos
Oxirredutases/genética , Proteínas de Plantas/genética , Interferência de RNA , Sementes/crescimento & desenvolvimento , Triticum/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
17.
BMC Genomics ; 18(1): 212, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28241738

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. RESULTS: We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. CONCLUSION: Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.


Assuntos
Temperatura Baixa , MicroRNAs/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Triticum/fisiologia
18.
BMC Genomics ; 17: 402, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27229309

RESUMO

BACKGROUND: Legumes are the second-most important crop family in agriculture for its economic and nutritional values. Disease resistance (R-) genes play an important role in responding to pathogen infections in plants. To further increase the yield of legume crops, we need a comprehensive understanding of the evolution of R-genes in the legume family. RESULTS: In this study, we developed a robust pipeline and identified a total of 4,217 R-genes in the genomes of seven sequenced legume species. A dramatic diversity of R-genes with structural variances indicated a rapid birth-and-death rate during the R-gene evolution in legumes. The number of R-genes transiently expanded and then quickly contracted after whole-genome duplications, which meant that R-genes were sensitive to subsequent diploidization. R proteins with the Coiled-coil (CC) domain are more conserved than others in legumes. Meanwhile, other types of legume R proteins with only one or two typical domains were subjected to higher rates of loss during evolution. Although R-genes evolved quickly in legumes, they tended to undergo purifying selection instead of positive selection during evolution. In addition, domestication events in some legume species preferentially selected for the genes directly involved in the plant-pathogen interaction pathway while suppressing those R-genes with low occurrence rates. CONCLUSIONS: Our results provide insights into the dynamic evolution of R-genes in the legume family, which will be valuable for facilitating genetic improvements in the disease resistance of legume cultivars.


Assuntos
Resistência à Doença/genética , Evolução Molecular , Fabaceae/classificação , Fabaceae/genética , Genes de Plantas , Filogenia , Doenças das Plantas/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos , Seleção Genética , Análise de Sequência de DNA
19.
BMC Plant Biol ; 16(1): 228, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769185

RESUMO

BACKGROUND: Phytoene synthase 1 (PSY1) is the most important regulatory enzyme in carotenoid biosynthesis, whereas its function is hardly known in common wheat. The aims of the present study were to investigate Psy1 function and genetic regulation using reverse genetics approaches. RESULTS: Transcript levels of Psy1 in RNAi transgenic lines were decreased by 54-76 % and yellow pigment content (YPC) was reduced by 26-35 % compared with controls, confirming the impact of Psy1 on carotenoid accumulation. A series of candidate genes involved in secondary metabolic pathways and core metabolic processes responded to Psy1 down-regulation. The aspartate rich domain (DXXXD) was important for PSY1 function, and conserved nucleotides adjacent to the domain influenced YPC by regulating gene expression, enzyme activity or alternative splicing. Compensatory responses analysis indicated that three Psy1 homoeologs may be coordinately regulated under normal conditions, but separately regulated under stress. The period 14 days post anthesis (DPA) was found to be a key regulation node during grain development. CONCLUSION: The findings define key aspects of flour color regulation in wheat and facilitate the genetic improvement of wheat quality targeting color/nutritional specifications required for specific end products.


Assuntos
Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Pigmentação/genética , Proteínas de Plantas/genética , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Geranil-Geranildifosfato Geranil-Geraniltransferase/química , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA