Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 322, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654173

RESUMO

BACKGROUND: PIN-FORMED genes (PINs) are crucial in plant development as they determine the directionality of auxin flow. They are present in almost all land plants and even in green algae. However, their role in fern development has not yet been determined. This study aims to investigate the function of CrPINMa in the quasi-model water fern Ceratopteris richardii. RESULTS: CrPINMa possessed a long central hydrophilic loop and characteristic motifs within it, which indicated that it belonged to the canonical rather than the non-canonical PINs. CrPINMa was positioned in the lineage leading to Arabidopsis PIN6 but not that to its PIN1, and it had undergone numerous gene duplications. CRISPR/Cas9 genome editing had been performed in ferns for the first time, producing diverse mutations including local frameshifts for CrPINMa. Plants possessing disrupted CrPINMa exhibited retarded leaf emergence and reduced leaf size though they could survive and reproduce at the same time. CrPINMa transcripts were distributed in the shoot apical meristem, leaf primordia and their vasculature. Finally, CrPINMa proteins were localized to the plasma membrane rather than other cell parts. CONCLUSIONS: CRISPR/Cas9 genome editing is feasible in ferns, and that PINs can play a role in fern leaf development.


Assuntos
Proteínas de Membrana Transportadoras , Folhas de Planta , Proteínas de Plantas , Pteridaceae , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pteridaceae/genética , Pteridaceae/metabolismo , Pteridaceae/crescimento & desenvolvimento
2.
Small ; : e2309859, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377282

RESUMO

Designing and fabricating highly efficient oxygen evolution reaction (OER) electrocatalytic materials for water splitting is a promising and practical approach to green and sustainable low-carbon energy systems. Herein, a facile in situ growth self-template strategy by using ZIF-67 as a consumable layered double hydroxides (LDHs) template and silver nanowires (AgNWs) as 1D conductive cascaded substrate to controllably synthesize the target AgNWs@CoFe-LDH composites with unique hollow shell sugar gourd-like structure and enhanced directional electron transport effect is reported. The AgNWs exhibit the key functions of the close connection of CoFe-LDH nanocages and the support of the directional electron transport effect in the composite catalyst inducing electrons directionally moving from CoFe-LDH to AgNWs. Meanwhile, the CoFe-LDH nanocages with ultrathin nanosheets and hollow structural properties show abundant active sites for electrocatalytic oxygen generation. The versatile AgNWs@CoFe-LDH catalyst with optimized components, enhanced directional electron transport, and synergistic effect achieves high OER performance with the overpotential of 207 mV and long-term 50 h stability at 10 mA cm-2 in an alkaline medium. Moreover, in-depth insights into the microstructure, structure-activity relationships, identification of key intermediate species, and a proton-coupled four-electron OER mechanism based on experimental discovery and theoretical calculation are also demonstrated.

3.
Ann Bot ; 133(3): 495-507, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38206867

RESUMO

BACKGROUND AND AIMS: In flowering plants, regeneration can be achieved by a variety of approaches, and different sets of transcriptional factors are involved in these processes. However, regeneration in taxa other than flowering plants remains a mystery. Ceratopteris richardii is a representative fern capable of both direct and indirect organogenesis, and we aimed to investigate the genetics underlying the transition from callus proliferation to differentiation. METHODS: Morphological and histological analyses were used to determine the type of regeneration involved. RNA sequencing and differential gene expression were used to investigate how the callus switches from proliferation to differentiation. Phylogenetic analysis and RNA in situ hybridization were used to understand whether transcriptional factors are involved in this transition. KEY RESULTS: The callus formed on nascent leaves and subsequently developed the shoot pro-meristem and shoot meristem, thus completing indirect de novo shoot organogenesis in C. richardii. Genes were differentially expressed during the callus transition from proliferation to differentiation, indicating a role for photosynthesis, stimulus response and transmembrane signalling in this transition and the involvement of almost all cell layers that make up the callus. Transcriptional factors were either downregulated or upregulated, which were generally in many-to-many orthology with genes known to be involved in callus development in flowering plants, suggesting that the genetics of fern callus development are both conserved and divergent. Among them, an STM-like, a PLT-like and an ethylene- and salt-inducible ERF gene3-like gene were expressed simultaneously in the vasculature but not in the other parts of the callus, indicating that the vasculature played a role in the callus transition from proliferation to differentiation. CONCLUSIONS: Indirect de novo shoot organogenesis could occur in ferns, and the callus transition from proliferation to differentiation required physiological changes, differential expression of transcriptional factors and involvement of the vasculature.


Assuntos
Gleiquênias , Gleiquênias/genética , Fatores de Transcrição/genética , Filogenia , Meristema , RNA
4.
Angew Chem Int Ed Engl ; : e202408041, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738797

RESUMO

Covalent organic frameworks (COFs) are promising photocatalysts for H2O2 production from water via oxygen reduction reactions (ORR). The design of COFs for efficient H2O2 production indubitably hinges on an in-depth understanding of their ORR mechanisms. In this work, taking an imine-linked COF as an example, we demonstrate that protonation of the functional units such as imine, amine, and triazine, is a highly efficient strategy to upgrade the activity levels for H2O2 synthesis. The protonation not only extends the light absorption of the COF but also provides proton sources that directly participate in H2O2 generation. Notably, the protonation simplifies the reaction pathways of ORR to H2O2, i.e. from an indirect superoxide radical ([[EQUATION]]) mediated route to a direct one-step two-electron route. Theoretical calculations confirm that the protonation favors H2O2 synthesis due to easy access of protons near the reaction sites that removes the energy barrier for generating *OOH intermediate. These findings not only extend the mechanistic insight into H2O2 photosynthesis but also provide a rational guideline for the design and upgradation of efficient COFs.

5.
Angew Chem Int Ed Engl ; : e202406650, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818631

RESUMO

Dispersion of single atoms (SAs) in the host is important for optimizing catalytic activity. Herein, we propose a novel strategy to tune oxygen vacancies in CeO2-X directionally anchoring the single atom platinum (PtSA), which is uniformly dispersed on the rGO. The catalyst's performance for the hydrogen evolution reaction (HER) can be enhanced by controlling different densities of CeO2-X in rGO. The PtSA performs best optimally densified and loaded on homogeneous and moderately densified CeO2-X/rGO (PtSA-M-CeO2-X/rGO). It exhibited high activity in HER with an overpotential of 25 mV at 0.5 M H2SO4 and 33 mV at 1 KOH than that of almost reported electrocatalysts. Furthermore, it exhibited stability for 90 hours at -100 mA cm-2 in 1 KOH and -150 mA cm-2 in 0.5 M H2SO4 conditions, respectively. Through comprehensive experiments and theoretical calculations, the suitable dispersion density of PtSA on the defects of CeO2-X with more active sites gives the potential for practical applications. This research paves the way for developing single-atom catalysts with exceptional catalytic activity and stability, holding promise in advanced green energy conversion through defects engineering.

6.
J Am Chem Soc ; 145(28): 15482-15487, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418381

RESUMO

Efficient utilization of infrared (IR) light, which occupies almost half of the solar energy, is an important but challenging task in solar-to-fuel transformation. Herein, we report the discovery of CuS@ZnS core@shell nanocrystals (CSNCs) with strong localized surface plasmon resonance (LSPR) characteristics in the IR light region showing enhanced photocatalytic activity in hydrogen evolution reaction (HER). A unique "plasmon-induced defect-mediated carrier transfer" (PIDCT) at the heterointerfaces of the CSNCs divulged by time-resolved transient spectroscopy enables producing a high quantum yield of 29.2%. The CuS@ZnS CSNCs exhibit high activity and stability in H2 evolution under near-IR light irradiation. The HER rate of CuS@ZnS CSNCs at 26.9 µmol h-1 g-1 is significantly higher than those of CuS NCs (0.4 µmol h-1 g-1) and CuS/ZnS core/satellite heterostructured NCs (15.6 µmol h-1 g-1). The PIDCT may provide a viable strategy for the tuning of LSPR-generated carrier kinetics through controlling the defect engineering to improve photocatalytic performance.

7.
Small ; 19(48): e2304258, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37525327

RESUMO

How to mildly structure a high intrinsic activity and stable catalytic electrode to realize long-term catalytic water splitting to produce hydrogen at a wide range of pH values at industrial high current is a challenge. Herein, this work creatively proposes to prepare industrial-grade catalytic electrodes with high efficiency and stability at high current density through carbon quantum dots (CDs) modification nickel sulfide on hydrophilic flexible filter paper via one-step mild chemical plating (denoted as CDs-Ni3 S2 @HFP). The intrinsic activity and surface area, electron transfer ability, and corrosion resistance of Ni3 S2 material are increased due to the regulation, homogenous, and high concentration doping of CDs. The overpotential of the flexible catalytic electrode is only 30, 35, and 87 mV in 1 m KOH, simulated seawater (1 m KOH + 0.5 m NaCl), and neutral electrolyte (0.5 m PBS) at a current density of 10 mA cm-2 . More attractively, the CDs-Ni3 S2 @HFP electrode achieves over 500 h of efficient and stable catalysis at industrial high current density (500 mA cm-2 ). Due to the advantages of mild, universal, and large-area preparation of catalytic materials, this work provides technical support for flexible catalytic electrodes in efficient catalysis toward water splitting, energy storage, and device preparation.

8.
Small ; 19(11): e2205689, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585395

RESUMO

Designing nonprecious metal-based electrocatalysts to yield sustainable hydrogen energy by large-scale seawater electrolysis is challenging to global emissions of carbon neutrality and carbon peaking. Herein, a series of highly efficient, economical, and robust Ni-P-based nanoballs grown on the flexible and anti-corrosive hydrophobic asbestos (NiPx @HA) is synthesized by electroless plating at 25 °C toward alkaline simulated seawater splitting. On the basis of the strong chemical attachment between 2D layered substrate and nickel-rich components, robust hexagonal Ni5 P4 crystalline modification, and fast electron transfer capability, the overpotentials during hydrogen/oxygen evolution reaction (HER/OER) are 208 and 392 mV at 200 mA cm-2 , and the chronopotentiometric measurement at 500 mA cm-2 lasts for over 40 days. Additionally, the versatile strategy is broadly profitable for industrial applications and enables multi-elemental doping (iron/cobalt/molybdenum/boron/tungsten), flexible substrate employment (nickel foam/filter paper/hydrophilic cloth), and scalable synthesis (22 cm × 22 cm). Density functional theory (DFT) also reveals that the optimized performance is due to the fundamental effect of incorporating O-source into Ni5 P4 . Therefore, this work exhibits a complementary strategy in the construction of NiPx -based electrodes and offers bright opportunities to produce scalable hydrogen effectively and stably in alkaline corrosive electrolytes.

9.
J Sep Sci ; 46(10): e2200825, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892410

RESUMO

The molecular imprinting technique has aroused great interest in preparing novel stationary phases, and the resulting materials named molecularly imprinted polymers coated silica packing materials exhibit good performance in separating diverse analytes based on their good characteristics (including high selectivity, simple synthesis, and good chemical stability). To date, mono-template is commonly used in synthesizing molecularly imprinted polymers-based stationary phases. The resulting materials always own the disadvantages of low column efficiency and restricted analytes, and the price of ginsenosides with high purity was very high. In this study, to overcome the weaknesses of molecularly imprinted polymers-based stationary phases mentioned above, the multi-templates (total saponins of folium ginseng) strategy was used to prepare ginsenosides imprinted polymer-based stationary phase. The resulting ginsenosides imprinted polymer-coated silica stationary phase has a good spherical shape and suitable pore structures. Additionally, the total saponins of folium ginseng were cheaper than other kinds of ginsenosides. Moreover, the ginsenosides imprinted polymer-coated silica stationary phase-packed column performed well in the separation of ginsenosides, nucleosides, and sulfonamides. The ginsenosides imprinted polymer-coated silica stationary phase possesses good reproducibility, repeatability, and stability for seven days. Therefore, a multi-templates strategy for synthesizing the ginsenosides imprinted polymer-coated silica stationary phase is considered in the future.


Assuntos
Ginsenosídeos , Saponinas , Ginsenosídeos/química , Polímeros/química , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos , Dióxido de Silício/química
10.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615529

RESUMO

The abuse and residues of antibiotics have a great impact on the environment and organisms, and their determination has become very important. Due to their low contents, varieties and complex matrices, effective recognition, separation and enrichment are usually required prior to determination. Molecularly imprinted polymers (MIPs), a kind of highly selective polymer prepared via molecular imprinting technology (MIT), are used widely in the analytical detection of antibiotics, as adsorbents of solid-phase extraction (SPE) and as recognition elements of sensors. Herein, recent advances in MIPs for antibiotic residue analysis are reviewed. Firstly, several new preparation techniques of MIPs for detecting antibiotics are briefly introduced, including surface imprinting, nanoimprinting, living/controlled radical polymerization, and multi-template imprinting, multi-functional monomer imprinting and dummy template imprinting. Secondly, several SPE modes based on MIPs are summarized, namely packed SPE, magnetic SPE, dispersive SPE, matrix solid-phase dispersive extraction, solid-phase microextraction, stir-bar sorptive extraction and pipette-tip SPE. Thirdly, the basic principles of MIP-based sensors and three sensing modes, including electrochemical sensing, optical sensing and mass sensing, are also outlined. Fourthly, the research progress on molecularly imprinted SPEs (MISPEs) and MIP-based electrochemical/optical/mass sensors for the detection of various antibiotic residues in environmental and food samples since 2018 are comprehensively reviewed, including sulfonamides, quinolones, ß-lactams and so on. Finally, the preparation and application prospects of MIPs for detecting antibiotics are outlined.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Antibacterianos , Extração em Fase Sólida/métodos , Microextração em Fase Sólida/métodos , Polímeros/química , Impressão Molecular/métodos
11.
J Environ Sci (China) ; 134: 126-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673528

RESUMO

Pyrazinoquinoxaline-based graphdiyne (PQ-GDY) contains a fixed number of sp-sp2 hybridized carbon atoms and pyrazine-like sp2 hybridized N atoms. In this paper, NH2-UIO-66(Zr) on PQ-GDY substrate was successfully constructed with the help of microwave-assisted heating. PQ-GDY surface acts as a microwave antenna under microwave irradiation to rapidly absorb microwave energy and form hot spots (hot spot effect), which facilitates the formation of well-dispersed NH2-UIO-66(Zr) with good crystallinity. Transient absorption spectra show that high hole transport property of PQ-GDY can accelerate the migration of photogenerated holes from NH2-UIO-66(Zr) to PQ-GDY and greatly reduce the recombination rate of photogenerated electrons and holes due to the strong interaction between PQ-GDY and NH2-UIO-66(Zr). Under visible light (λ ≥ 420 nm), PQ-GDY@NH2-UIO-66(Zr) shows high photocatalytic stability and high NOx removal rate up to 74%, which is 44% higher than that of primitive NH2-UIO-66(Zr). At the same time, it inhibits the formation of toxic by-products (NO2) and limits its concentration to a low level.


Assuntos
Micro-Ondas , Ácidos Ftálicos , Luz , Carbono
12.
Angew Chem Int Ed Engl ; 62(28): e202305538, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37191471

RESUMO

The selective conversion of dilute NO pollutant into low-toxic product and simultaneous storage of metabolic nitrogen for crop plants remains a great challenge from the perspective of waste management and sustainable chemistry. This study demonstrates that this bottleneck can be well tackled by refining the reactive oxygen species (ROS) on Ni-modified NH2 -UiO-66(Zr) (Ni@NU) using nickel foam (NF) as a three-dimensional (3D) substrate through a flow photoanode reactor via the gas-phase photoelectrocatalysis. By rationally refining the ROS to ⋅OH, Ni@NU/NF can rapidly eliminate 82 % of NO without releasing remarkable NO2 under a low bias voltage (0.3 V) and visible light irradiation. The abundant mesoporous pores on Ni@NU/NF are conducive to the diffusion and storage of the formed nitrate, which enables the progressive conversion NO into nitrate with selectivity over 99 % for long-term use. Through calculation, 90 % of NO could be recovered as the nitrate species, indicating that this state-of-the-art strategy can capture, enrich and recycle the pollutant N source from the atmosphere. This study offers a new perspective of NO pollutant treatment and sustainable nitrogen exploitation, which may possess great potential to the development of highly efficient air purification systems for industrial and indoor NOx control.

13.
Anal Chem ; 94(51): 18050-18058, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36507709

RESUMO

The development of formaldehyde (HCHO) gas sensors with high sensitivity, good selectivity, and fast response at room temperature is an important research topic. The resonant microcantilever, with high sensitivity, easy batch manufacturing, and integration, generates sensing signals based on the relationship between the frequency and the mass addition of the adsorbed molecules and shows good application potential in HCHO detection. Herein, we report two species of MoS2 nanosheets (NSs) with 1T and 2H phases as sensitive materials to construct high-performance HCHO resonant cantilever sensors. The 2H-MoS2 gas sensors show better sensitivity toward HCHO compared to the 1T-MoS2 gas sensor. Specifically, the 2H-MoS2 sensor displayed a high sensitivity (Hz) of 13.6-1 ppm HCHO at room temperature, with high selectivity, low limit of detection (10 ppb), and good humidity resistance. The effect of phase structures on the sensing performance was studied by in situ characterizations, thermodynamic analysis, and density functional theory calculations. The good sensing ability could be attributed to the abundant active sites induced by the surface defects, suitable adsorption strength, and the outstanding thermodynamic performance of the 2H-MoS2. The combination of two-dimensional (2D) nanosheet and microcantilever sensors provides a new direction for developing a high-performance room-temperature gas sensor in the future.

14.
Small ; 18(12): e2106868, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088573

RESUMO

In terms of the large-scale hydrogen production by water electrolysis, achieving the bifunctional electrocatalyst with high efficiency and stability at high current densities is of great significance but still remains a grand challenge. To address this issue, herein, one unique hybrid electrode is synthesized with the local photothermal effect (LPTE) by supporting the novel ternary nickel (Ni)bismuth (Bi)sulfur (S) nanosheet arrays onto nickel foam (Ni3 Bi2 S2 @NF) via a one-pot hydrothermal reaction. The combined experimental and theoretical observations reveal that owing to the intrinsic LPTE action of Bi, robust phase stability of Ni3 Bi2 S2 as well as the synergistic effect with hierarchical configuration, upon injecting the light, the as-prepared Ni3 Bi2 S2 exhibits remarkably improved efficiency of 44% and 35% for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Such enhanced values are also comparable to those performed in working media heated to 80 °C. In addition, the overall water splitting system by using Ni3 Bi2 S2 @NF as bifunctional electrodes only delivers an ultralow voltage of 1.40 V at 10 mA cm-2 under LPTE, and can be stable more than 36 h at 500-1000 mA cm-2 . More broadly, even worked at 0-5 °C, alkaline simulated seawater and high salt seawater, the electrodes still show apparent LPTE effect for improving catalytic efficiency.

15.
Environ Sci Technol ; 56(9): 5830-5839, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35404578

RESUMO

Learning from the important role of porphyrin-based chromophores in natural photosynthesis, a bionic photocatalytic system based on tetrakis (4-carboxyphenyl) porphyrin-coupled TiO2 was designed for photo-induced treating low-concentration NOx indoor gas (550 parts per billion), achieving a high NO removal rate of 91% and a long stability under visible-light (λ ≥ 420 nm) irradiation. Besides the great contribution of the conventional •O2- reactive species, a synergic effect between a singlet oxygen (1O2) and mobile hydroxyl radicals (•OHf) was first illustrated for removing NOx indoor gas (1O2 + 2NO → 2NO2, NO2 + •OHf → HNO3), inhibiting the production of the byproducts of NO2. This work is helpful for understanding the surface mechanism of photocatalytic NOx oxidation and provides a new perspective for the development of highly efficient air purification systems.


Assuntos
Radical Hidroxila , Porfirinas , Dióxido de Nitrogênio , Oxirredução , Oxigênio , Oxigênio Singlete , Titânio/efeitos da radiação
16.
Molecules ; 28(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615491

RESUMO

Traditional Chinese medicine (TCM) is one of the most internationally competitive industries. In the context of TCM modernization and internationalization, TCM-related research studies have entered a fast track of development. At the same time, research of TCM is also faced with challenges, such as matrix complexity, component diversity and low level of active components. As an interdisciplinary technology, molecular imprinting technology (MIT) has gained popularity in TCM study, owing to the produced molecularly imprinted polymers (MIPs) possessing the unique features of structure predictability, recognition specificity and application universality, as well as physical robustness, thermal stability, low cost and easy preparation. Herein, we comprehensively review the recent advances of MIT for TCM studies since 2017, focusing on two main aspects including extraction/separation and purification and detection of active components, and identification analysis of hazardous components. The fundamentals of MIT are briefly outlined and emerging preparation techniques for MIPs applied in TCM are highlighted, such as surface imprinting, nanoimprinting and multitemplate and multifunctional monomer imprinting. Then, applications of MIPs in common active components research including flavonoids, alkaloids, terpenoids, glycosides and polyphenols, etc. are respectively summarized, followed by screening and enantioseparation. Related identification detection of hazardous components from TCM itself, illegal addition, or pollution residues (e.g., heavy metals, pesticides) are discussed. Moreover, the applications of MIT in new formulation of TCM, chiral drug resolution and detection of growing environment are summarized. Finally, we propose some issues still to be solved and future research directions to be expected of MIT for TCM studies.


Assuntos
Medicina Tradicional Chinesa , Impressão Molecular , Impressão Molecular/métodos , Polímeros/química , Flavonoides , Polifenóis , Polímeros Molecularmente Impressos
17.
Oncologist ; 26(10): e1693-e1703, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34105207

RESUMO

BACKGROUND: Treatment options for refractory metastatic colorectal cancer (mCRC) were limited. Anlotinib is a novel multitarget tyrosine kinase inhibitor. ALTER0703 study was conducted to assess efficacy and safety of anlotinib for patients with refractory mCRC. MATERIALS AND METHODS: This was a multicenter, double-blinded, placebo-controlled, randomized phase III trial involving 33 hospitals in China. Patients had taken at least two lines of therapies were 2:1 randomized to receive oral anlotinib (12 mg/day; days 1-14; 21 days per cycle) or placebo, plus best supportive care. Randomization was stratified by previous VEGF-targeting treatments and time from diagnosis to metastases. The primary endpoint was overall survival (OS). The secondary endpoints were progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), quality of life (QoL), and safety. RESULTS: A total of 419 patients (anlotinib: 282; placebo: 137) were treated from December 2014 to August 2016. The median PFS was improved in anlotinib group (4.1 months; 95% confidence interval [CI], 3.4-4.5) over placebo group (1.5 months; 95% CI, 1.4-1.5), with a hazard ratio (HR) of 0.34 (95% CI, 0.27-0.43; p < .0001). However, median OS was similar between two groups (8.6 months; 95% CI, 7.8-9.7 vs. 7.2 months; 95% CI, 6.2-8.8; HR, 1.02; p = .870). Improvements of ORR and DCR were observed in anlotinib over placebo. The most common grade ≥ 3 anlotinib related adverse events were hypertension (20.92%), increased γ-GT (7.09%), and hand-foot skin reaction (6.38%). CONCLUSION: Anlotinib was tolerated in Chinese patients with refractory mCRC. Although OS did not reach significant difference, anlotinib still provided clinical benefits by substantially prolonged PFS in these patients. IMPLICATIONS FOR PRACTICE: In this randomized clinical trial that included 419 patients with refractory metastatic colorectal cancer, substantial prolonged in progression-free survival was noted in patients who received anlotinib compared with those given placebo. Improvements on objective response rate and disease control rate was also observed in anlotinib group. However, overall survival was similar between the two groups. In a word, in third-line or above treatment of Chinese patients with refractory metastatic colorectal cancer, anlotinib provided clinical benefit by significantly prolonged progression-free survival.


Assuntos
Neoplasias Colorretais , Quinolinas , Neoplasias Colorretais/tratamento farmacológico , Método Duplo-Cego , Humanos , Indóis , Qualidade de Vida
18.
Am J Bot ; 107(11): 1470-1480, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216953

RESUMO

PREMISE: Leaves are traditionally classified into microphylls and megaphylls, and recently have been regarded as independently originating in lycophytes, ferns, and seed plants. The developmental genetics of leaf dorsoventrality, a synapomorphy in vascular plants, has been extensively studied in flowering plants. AUXIN RESPONSE FACTOR4 (ARF4) genes are key to leaf abaxial identity in flowering plants, but whether they exist in ferns is still an open question. METHODS: ARF4 genes from Ceratopteris pteridoides, Cyrtomium guizhouense, and Parathelypteris nipponica were mined from transcriptomes and investigated in terms of evolutionary phylogeny and sequence motifs, with a focus on the tasiR-ARF binding site. In situ hybridization was used to localize expression of CpARF4 in Ceratopteris pteridoides. 5'RNA ligase-mediated-RACE was employed to verify whether CpARF4 transcripts were sliced by tasiR-ARF. RESULTS: ARF4 genes exist in ferns, and this lineage originates from a gene duplication in the common ancestor of ferns and seed plants. ARF4 genes are of a single copy in the ferns studied here, and they contain divergent and, at most, one tasiR-ARF binding site. CpARF4 is expressed in the abaxial but not the adaxial domain of leaf primordia at various developmental stages. Transcript slicing guided by tasiR-ARF is active in C. pteridoides, but CpARF4 probably has not been affected by it. CONCLUSIONS: Fern ARF4 genes differ in copy number and tasiR-ARF regulation relative to flowering plants, though they can be similarly expressed in the abaxial domain of leaves, revealing a key role for ARF4 genes in the evolution of leaf dorsoventrality of vascular plants.


Assuntos
Gleiquênias , Gleiquênias/genética , Ácidos Indolacéticos , Filogenia , Folhas de Planta , Água
19.
BMC Gastroenterol ; 20(1): 96, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264830

RESUMO

BACKGROUND: There are obviously ethnic differences between the UGT1A1 gene polymorphisms. Due to the difference of genetic background and environment, the treatment with colorectal cancer patients of Guangxi Zhuang should not completely follow the Euramerican or Chinese han patients. The study aimed to explore the correlation of UGT1A1 gene polymorphism of Guangxi Zhuang metastatic colorectal cancer (mCRC) with irinotecan -based chemotherapy, in order to develop an individualized irinotecan regimen for mCRC patients of Guangxi Zhuang. METHODS: From June 2013 and June 2015, a total of 406 patients of Guangxi who were histologically diagnosed as metastatic colorectal cancer with 102 patients of this cohort with three generations of Zhuang, and 86 patients that conformed to inclusion and exclusion criteria were competitively enrolled. The distribution of UGT1A1 gene polymorphism was analyzed-retrospectively in all patients. Pyrosequencing method was used to detect the UGT1A1*28 and*6 gene polymorphism in the 86 Guangxi Zhuang mCRC patients. After first-line chemotherapy with FOLFIRI regimen, the relationship between gene polymorphism of UGT1A1 and adverse reactions, and efficacy of Irinotecan were analyzed with χ2 test and Kaplan-Meier method. RESULTS: UGT1A1*28 wild-type (TA6/6), heterozygous mutant (TA6/7) and homozygous mutant (TA7/7) accounted for 69.8, 30.2 and 0%, respectively. UGT1A1*6 wild type (G/G), heterozygous mutation type (G/A) and homozygous mutant (A/A) accounted for 76.7%, 20.9 and 2.3%, respectively. UGT1A1*28 TA6/7 type could increase the risk of grade 3~4 diarrhea (p = 0.027), which did not increase the risk of grade 3~4 neutropenia (p = 0.092). UGT1A1*6G/A and A/A type could increase the risk of grade 3~4 diarrhea and neutropenia (p = 0.001; p = 0.017). After chemotherapy with FOLFIRI, there was no significant difference in response rate (RR) (p = 0.729; p = 0.745) or in median progression-free survival (mPFS) between the wild-type, mutant treatment of UGT1A1*28 and UGT1A1*6 (7.0 m vs 7.4 m, p = 0.427; 6.9 m vs 7.0 m p = 0.408). CONCLUSIONS: The distribution of UGT1A1*28 and UGT1A1*6 gene polymorphism in Guangxi Zhuang patients were differed from the existing reported of European people and Chinese Han population. The UGT1A1 gene polymorphism with irinotecan chemotherapy-associated diarrhea and neutropenia were closely related. There was no significant association between UGT1A1 gene polymorphism and therapeutic efficacy of irinotecan.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Glucuronosiltransferase/genética , Irinotecano/uso terapêutico , Polimorfismo Genético , Adulto , Idoso , Antineoplásicos/efeitos adversos , Camptotecina/uso terapêutico , China , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Fluoruracila/uso terapêutico , Seguimentos , Genótipo , Humanos , Irinotecano/efeitos adversos , Estimativa de Kaplan-Meier , Leucovorina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Medicina de Precisão , Intervalo Livre de Progressão , Estudos Retrospectivos , Resultado do Tratamento
20.
Environ Sci Technol ; 54(9): 5902-5912, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250099

RESUMO

Most photoelectrocatalytic (PEC) reactions are performed in the liquid phase for convenient electron transfer in an electrolyte solution. Herein, a novel PEC reactor involving a tandem combination of TiO2 nanorod array/fluorine-doped tin oxide (TiO2-NR/FTO) working electrodes and an electrochemical auxiliary cell was constructed to drive the highly efficient PEC oxidation of indoor gas (NOx). With the aid of a low bias voltage (0.3 V), the as-formed PEC reactor exhibited an 80% removal rate for oxidizing NO (500 ppb) under light irradiation, which is much higher than that of the traditional photocatalytic (PC) process. Upon being irradiated by light, the photogenerated electrons are quickly separated from the holes and transferred to the counter electrode (Pt) owing to the applied bias voltage, leaving photogenerated holes in the TiO2-NR/FTO electrode for oxidizing NO molecules. Moreover, both dry and humid NO could be effectively removed by the tandem TiO2-NR/FTO-based gas-phase PEC reactor, indicating that the NO molecules could also be directly oxidized by photogenerated holes in addition to hydroxyl radicals. The presence of trace amounts of water could promote the PEC oxidation of NO owing to the formation of hydroxyl radicals induced by reactions between the water and holes, which could further oxidize NO. This PEC reactor offers an energy-saving, environmentally friendly, and efficient route to treat air polluted with low concentrations of gases (NOx and SOx).


Assuntos
Nanotubos , Purificação da Água , Catálise , Gases , Oxirredução , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA