Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786589

RESUMO

Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 µg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.


Assuntos
Sulfatos de Condroitina , Linguado , Glicosaminoglicanos , Espectrometria de Massas em Tandem , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/química , Cromatografia Líquida de Alta Pressão , Osso e Ossos/química , Pele/química , Pele/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Músculos/química
2.
Lipids Health Dis ; 21(1): 140, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529726

RESUMO

BACKGROUND: Green algae contain many polysaccharides. However, there is no information on whether Chaetomorpha linum polysaccharides (CLP) can modulate lipid and glucose metabolism. MATERIAL AND METHODS: CLP were extracted from chlorella and their components were characterized. Male C57BL/6 mice were randomized and provided with control chow as the control, or high fat diet (HFD) to induce nonalcoholic fatty liver disease (NAFLD). NAFLD mice were treated orally with water as the HFD group or with 50 or 150 mg/kg CLP daily for 10 weeks. The impact of CLP treatment on lipid and glucose metabolism and the PPARα signaling was examined by histology, Western blotting and biochemistry. RESULTS: CLP mainly contained arabinogalactan sulfate. Compared with the control, HFD feeding increased body weights, lipid droplet liver deposition and induced hyperlipidemia, liver functional impairment and glucose intolerance in mice. Treatment with CLP, particularly with a higher dose of CLP, limited the HFD-increased body weights and liver lipid droplet deposition, mitigated the HFD-induced hyperlipidemia and improved liver function and glucose tolerance in mice. Mechanistically, feeding with HFD dramatically decreased the expression of liver PPARα, CPT-1, and MCAD, but treatment with CLP enhanced their expression in a trend of dose-dependent in mice. CONCLUSIONS: These findings indicated that CLP treatment alleviated the gain in body weights, NAFLD, and glucose intolerance in mice after HFD feeding by enhancing the PPARα/CPT-1/MCAD signaling.


Assuntos
Chlorella , Linho , Intolerância à Glucose , Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Intolerância à Glucose/patologia , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Hiperlipidemias/patologia , Aumento de Peso , Glucose/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Lipídeos/uso terapêutico , Metabolismo dos Lipídeos
3.
Mar Drugs ; 20(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323467

RESUMO

Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the ß-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.


Assuntos
Proteínas de Bactérias , Gammaproteobacteria/enzimologia , Polissacarídeo-Liases , Polissacarídeos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Gammaproteobacteria/genética , Conformação Molecular , Filogenia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Proteínas Recombinantes/química , Cloreto de Sódio/química
4.
Nat Methods ; 15(11): 889-899, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377379

RESUMO

Heparan sulfate (HS) is a complex linear polysaccharide that modulates a wide range of biological functions. Elucidating the structure-function relationship of HS has been challenging. Here we report the generation of an HS-mutant mouse lung endothelial cell library by systematic deletion of HS genes expressed in the cell. We used this library to (1) determine that the strictly defined fine structure of HS, not its overall degree of sulfation, is more important for FGF2-FGFR1 signaling; (2) define the epitope features of commonly used anti-HS phage display antibodies; and (3) delineate the fine inter-regulation networks by which HS genes modify HS and chain length in mammalian cells at a cell-type-specific level. Our mutant-cell library will allow robust and systematic interrogation of the roles and related structures of HS in a cellular context.


Assuntos
Anticorpos/imunologia , Endotélio Vascular/metabolismo , Epitopos/imunologia , Heparitina Sulfato/química , Heparitina Sulfato/imunologia , Pulmão/metabolismo , Mutação , Animais , Especificidade de Anticorpos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Pulmão/citologia , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Transdução de Sinais , Relação Estrutura-Atividade , Enxofre/química
5.
Glycoconj J ; 38(5): 527-537, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480673

RESUMO

Mucins are the major proteins that distributed on the intestinal mucosa layer and protect the intestine from pathogens infection. The composition of intestinal mucin O-glycans can affect the health of the gastrointestinal tract in pigs. Porcine intestinal mucosa is widely used as the main raw material of heparin extraction. The heparin extraction residues rich in mucins were usually wasted. The structure of mucin derived O-glycans in porcine intestinal mucosa are currently unknown. In this study, we isolated the mucins from the heparin extraction residues and profiled the O-glycans. After heparin extraction, mucin was digested with trypsin, and separated by strong anion exchange chromatography. The mucin derived O-glycans were release by alkaline ß elimination, and analyzed by ultra high performance liquid chromatography-porous graphitized carbon-Fourier transform mass spectrometry (UPLC-PGC-FTMS/MS). Thirty five kinds of O-glycans were identified, most of which were Core 3-derived glycans. In particular, the O-glycans containing sialic acid Neu5Ac accounted for 71.93% of the total O-glycans, which were different from that of other species, including mouse intestine, fish intestine, and porcine colon. The high content sialylated mucin may explain its effect in biological processes. Furthermore, the immunological activity results indicated that the porcine intestinal mucin could promote phagocytosis and proliferation without any cytotoxic effects, which may aid in the development of immunomodulators.


Assuntos
Heparina/química , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Macrófagos/efeitos dos fármacos , Mucinas/química , Mucinas/farmacologia , Animais , Heparina/metabolismo , Macrófagos/imunologia , Camundongos , Células RAW 264.7 , Suínos
6.
Anaerobe ; 68: 102289, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33137435

RESUMO

Heparin and its derivative are commonly used as injectable anticoagulants in clinical procedures, but possess poor oral bioavailability. To explore the role of gut microbiota in the poor oral effect of heparin, the degradation profiles of heparin on six human gut microbiota were investigated. The heparin-degradation ability varied significantly among individuals. Furthermore, two strains of heparin-degrading bacteria, Bacteroides ovatus A2 and Bacteroides cellulosilyticus B19, were isolated from the gut microbiota of different individuals and the degradation products of the isolates were profiled. The ΔUA2S-GlcNS6S was the major end product with almost no desulfation. 3-O-sulfo group-containing tetrasaccharides were detected, which indicated that the antithrombin binding site was broken and this explained the lost anticoagulant activity of heparin. Collectively, the present study assessed the degradation profiles of heparin by human gut microbiota and provided references for the development of oral administration of heparin from a gut microbiota perspective.


Assuntos
Bacteroides/metabolismo , Microbioma Gastrointestinal , Heparina/metabolismo , Adulto , Bacteroides/isolamento & purificação , Fezes/microbiologia , Feminino , Fermentação , Heparina/química , Humanos , Masculino , Adulto Jovem
7.
J Proteome Res ; 18(6): 2559-2570, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30889355

RESUMO

Aberrant protein glycosylation is observed in the progression of many types of diseases, including different cancers. In this study, we assess differential N-glycan patterns of human breast cancer cells and tissues by PGC-ESI-MS/MS. Compared with mammary epithelial cells, high-mannose glycans were significantly elevated in breast cancer cells. However, the alteration of N-glycans in tissues was more obvious than that in cells. Sixty-three kinds of different N-glycans were stably identified, and 38 types of them exhibited significant differences between para-carcinoma and breast cancer tissues. High-mannose glycans and core-fucosylated glycans were increased in the breast cancer tissues, while bisected glycans and sialylated glycans were decreased. Moreover, a total of 27 types of N-glycans displayed evident differences between benign breast tumor and breast cancer tissues, and most of them including bisected and sialylated glycans exhibited decreased relative abundances in cancer tissues. Overall, three high-mannose N-glycans (F0H6N2S0, F0H7N2S0, F0H8N2S0) exhibited significant diagnostic accuracy in both breast cancer cells and tissues, suggesting their potential role in biomarkers. Furthermore, a negative correlation between sialylated glycans and age of patients was identified. In conclusion, our results may be beneficial to understand the role that N-glycan plays on the progression of breast cancer and propose potential diagnostic biomarkers.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias/diagnóstico , Polissacarídeos/genética , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Glicosilação , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Manose/química , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
8.
Glycoconj J ; 36(5): 419-428, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31297734

RESUMO

Gangliosides altered during the pathological conditions and particularly in cancers. Here, we aimed to profile the gangliosides in breast cancer serum and propose potential biomarkers. LC-FTMS method was first used to identify all the ganglioside species in serum, then LC-MS/MS-MRM method was employed to quantitate the levels of gangliosides in serum from healthy volunteers and patients with benign breast tumor or breast cancer. 49 ganglioside species were determined, including GM1, GM2, GM3, GD1, GD3 and GT1 species. Compared to healthy volunteers, the levels of GM1, GM2, GM3, GD1 and GD3 displayed a rising trend in breast cancer patients. In particular, as the major glycosphingolipid component, GM3 showed excellent diagnostic accuracy in cancer serum (AUC > 0.9). PCA profile of the GM3 species showed clear distinction between normal and cancer serum. What's more, ROC curve proved great diagnostic accuracy of GM3 between cancer and benign serum. In addition, GM3 was discovered as a diagnostic marker to differentiate luminal B subtype from other subtypes. Furthermore, a positive correlation between GM3 and Ki-67 status of patients was identified. In conclusion, our results introduced the alteration patterns of serum gangliosides in breast cancer and suggested serum GM3 as a potential diagnostic biomarker in breast cancer diagnosis and luminal B subtype distinction.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/diagnóstico , Gangliosídeo G(M3)/sangue , Neoplasias/diagnóstico , Adulto , Idoso , Área Sob a Curva , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Cromatografia Líquida , Diagnóstico Diferencial , Feminino , Gangliosídeos/sangue , Gangliosídeos/classificação , Humanos , Antígeno Ki-67/sangue , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/patologia , Análise de Componente Principal , Prognóstico , Curva ROC , Espectrometria de Massas em Tandem
9.
Molecules ; 24(7)2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959980

RESUMO

Intestinal mucins constitute the major component of the mucus covering the epithelium of the gastrointestinal tract, thereby forming a barrier against microbial colonization. Rabbits are bred in large numbers worldwide, with little known about intestinal O-glycosylation despite this insight being crucial to the understanding of host-pathogen interactions. In the present study, a major mucin-type glycopeptide (RIF6) of hyla rabbit intestine was isolated and the O-glycans were extensively characterized based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with bioinformatics approaches. Thirty-three O-glycans were identified, and most of them were sulfated or sialylated glycans. It was worth noting that Neu5Gc-containing structures within sialylated O-glycans accounted for 91%, which were extremely different from that of other species including humans, mice, chickens, etc. Sulfated glycans accounted for 58%, unique disufated and sulfated-sialylated glycans were also detected in rabbit intestinal mucin. These structural characterization reflected species diversity and may provide deeper insights into explaining the adaptability of hyla rabbit to the environment.


Assuntos
Metaboloma , Metabolômica , Mucinas/química , Ácidos Neuramínicos/química , Polissacarídeos/química , Sulfatos/química , Animais , Cromatografia Líquida , Fucose/química , Trato Gastrointestinal/metabolismo , Metabolômica/métodos , Mucinas/isolamento & purificação , Mucinas/metabolismo , Ácidos Neuramínicos/metabolismo , Polissacarídeos/metabolismo , Coelhos , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
10.
Molecules ; 24(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547311

RESUMO

Recent studies have reported that dietary fiber improved metabolic syndrome (MetS). However, the effects of fucoidans on MetS were still not clear. In this study, we evaluated the activity of fucoidan from Fucus vesiculosus (FvF) on attenuating MetS and first elucidated the underlying mechanism. In vitro, FvF treatment remarkably lowered the level of reactive oxygen species (ROS) compared with the sodium palmitate (PA)-induced insulin resistance (IR) group. The phosphorylation level of c-Jun N-terminal kinase (JNK) was significantly decreased, while phosphorylation of protein kinase B (pAkt) level increased, compared with that of the HepG2 cells treated with PA. Thus, FvF increased glucose consumption and relieved IR via ROS-mediated JNK and Akt signaling pathways. In addition, these changes were accompanied by the activation of adenosine 5'-monophosphate-ativated protein kinase (AMPK) and its downstream targets (e.g., HMG-CoA reductase (HMGCR), acetyl-CoA carboxylase (ACC), and sterol-regulatory element-binding protein-1c (SREBP-1C)), which improved lipid metabolism in IR HepG2 cells. In vivo, FvF improved hyperglycemia and decreased serum insulin level in mice with MetS. Furthermore, we evaluated the inhibition of glucose transport by in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model) and oral glucose tolerance test (OGTT), which indicated that FvF could significantly reduce the absorption of glucose into the blood stream, thus it could improve blood-glucose levels and IR in mice with MetS. Moreover, FvF decreased serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) levels and liver lipid accumulation, while increased the serum high density lipoprotein cholesterol (HDL-C) level in mice with MetS. Therefore, FvF could be considered as a potential candidate for the treatment of MetS by alleviating IR, inhibiting glucose transportation, and regulating lipid metabolism.


Assuntos
Fucus/química , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Células Hep G2 , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Mar Drugs ; 16(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772753

RESUMO

Recently, accumulating evidence has suggested that Enteromorpha clathrata polysaccharide (ECP) could contribute to the treatment of diseases. However, as a promising candidate for marine drug development, although ECP has been extensively studied, less consideration has been given to exploring its effect on gut microbiota. In this light, given the critical role of gut microbiota in health and disease, we investigated here the effect of ECP on gut microbiota using 16S rRNA high-throughput sequencing. As revealed by bioinformatic analyses, ECP considerably changed the structure of the gut microbiota and significantly promoted the growth of probiotic bacteria in C57BL/6J mice. However, interestingly, ECP exerted different effects on male and female microbiota. In females, ECP increased the abundances of Bifidobacterium spp. and Akkermansia muciniphila, a next-generation probiotic bacterium, whereas in males, ECP increased the population of Lactobacillus spp. Moreover, by shaping a more balanced structure of the microbiota, ECP remarkably reduced the antigen load from the gut in females. Altogether, our study demonstrates for the first time a prebiotic effect of ECP on gut microbiota and forms the basis for the development of ECP as a novel gut microbiota modulator for health promotion and disease management.


Assuntos
Organismos Aquáticos/metabolismo , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Ulva/metabolismo , Proteínas de Fase Aguda/imunologia , Administração Oral , Animais , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/isolamento & purificação , Proteínas de Transporte/sangue , Proteínas de Transporte/imunologia , Biologia Computacional , Suplementos Nutricionais , Modelos Animais de Doenças , Disbiose/sangue , Disbiose/imunologia , Feminino , Humanos , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Masculino , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Organismos Livres de Patógenos Específicos , Verrucomicrobia/efeitos dos fármacos , Verrucomicrobia/isolamento & purificação
12.
Mar Drugs ; 16(4)2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29662015

RESUMO

As an important glycosaminoglycan, keratan sulfate (KS) mainly exists in corneal and cartilage, possessing various biological activities. In this study, we purified KS from blue shark (Prionace glauca) cartilage and prepared KS oligosaccharides (KSO) through keratanase II-catalyzed hydrolysis. The structures of KS and KSO were characterized using multi-dimensional nuclear magnetic resonance (NMR) spectra and liquid chromatography-mass spectrometry (LC-MS). Shark cartilage KS was highly sulfated and modified with ~2.69% N-acetylneuraminic acid (NeuAc) through α(2,3)-linked to galactose. Additionally, KS exhibited binding affinity to Ricinus communis agglutinin I (RCA120) in a concentration-dependent manner, a highly toxic lectin from beans of the castor plant. Furthermore, KSO from dp2 to dp8 bound to RCA120 in the increasing trend while the binding affinity of dp8 was superior to polysaccharide. These results define novel structural features for KS from Prionace glauca cartilage and demonstrate the potential application on ricin-antidote exploitation.


Assuntos
Cartilagem/química , Sulfato de Queratano/química , Lectinas de Plantas/química , Tubarões/metabolismo , Acetilglucosaminidase/química , Animais , Cromatografia Líquida , Galactose/química , Hidrólise/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Oligossacarídeos/química , Espectrometria de Massas em Tandem/métodos
13.
Glycobiology ; 27(2): 176-187, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27621378

RESUMO

Glycosaminoglycans (GAGs) are linear polysaccharides comprised of disaccharide repeat units, a hexuronic acid, glucuronic acid or iduronic acid, linked to a hexosamine, N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine. GAGs undergo further modification such as epimerization and sulfation. These polysaccharides are abundant in the extracellular matrix and connective tissues. GAGs function in stabilization of the fibrillar extracellular matrix, control of hydration, regulation of tissue, organism development by controlling cell cycle, cell behavior and differentiation. Niche adapted bacteria express enzymes called polysaccharide lyases (PL), which degrade GAGs for their nutrient content. PL have been classified into 24 sequence-related families. Comparison of 3D structures of the prototypic members of these families allowed identification of distant evolutionary relationships between lyases that were unrecognized at the sequence level, and identified occurrences of convergent evolution. We have characterized structurally and enzymatically heparinase III from Bacteroides thetaiotaomicron (BtHepIII; gene BT4657), which is classified within the PL12 family. BtHepIII is a 72.5 kDa protein. We present the X-ray structures of two crystal forms of BtHepIII at resolution 1.8 and 2.4 Å. BtHepIII contains two domains, the N-terminal α-helical domain forming a toroid and the C-terminal ß-sheet domain. Comparison with recently determined structures of two other heparinases from the same PL12 family allowed us to identify structural flexibility in the arrangement of the domains indicating open-close movement. Based on comparison with other GAG lyases, we identified Tyr301 as the main catalytic residue and confirmed this by site-directed mutagenesis. We have characterized substrate preference of BtHepIII toward sulfate-poor heparan sulfate substrate.


Assuntos
Bacteroides thetaiotaomicron/enzimologia , Polissacarídeo-Liases/química , Conformação Proteica , Sítios de Ligação , Catálise , Cristalografia por Raios X , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Polissacarídeo-Liases/genética , Ligação Proteica , Especificidade por Substrato
14.
Glycoconj J ; 34(5): 661-669, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28822024

RESUMO

In this report, we used liquid chromatography-mass spectrometry and Western blotting to analyze the content and structure of glycosaminoglycans, glycolipids and selected proteins to compare differences between patient-matched normal and cancerous lung tissues obtained from lung cancer patients. The cancer tissue samples contained over twice as much chondroitin sulfate (CS)/dermatan sulfate (DS) as did the normal tissue samples, while the amount of heparan sulfate (HS) and hyaluronan (HA) in normal and cancer tissues were not significantly different. In HS, several minor disaccharide components, including NS6S, NS2S and 2S were significantly lower in cancer tissues, while the levels of major disaccharides, TriS, NS and 0S disaccharides were not significantly different in normal and cancer tissues. In regards to CS/DS, the level of 4S disaccharide (the major component of CS-type A and DS) decreased and the level of 6S disaccharide (the major component of CS- type C) increased in cancer tissues. We also compared the content and structure of GAGs in lung tissues from smoking and non-smoking patients. Analysis of the glycolipids showed all lipids present in these lung tissues, with the exception of sphingomyelin were higher in cancer tissues than in normal tissues. Western analysis showed that syndecan 1 and 2 proteoglycans displayed much higher expression in cancer tissue/biopsy samples. This investigation begins to provide an understanding of patho-physiological roles on glycosaminoglycans and glycolipids and might be useful in identifying potential biomarkers in lung cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/análogos & derivados , Heparitina Sulfato/metabolismo , Ácido Hialurônico/metabolismo , Neoplasias Pulmonares/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/química , Biomarcadores Tumorais/isolamento & purificação , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Cromatografia Líquida , Dermatan Sulfato/química , Dermatan Sulfato/isolamento & purificação , Dermatan Sulfato/metabolismo , Dissacarídeos/química , Dissacarídeos/isolamento & purificação , Dissacarídeos/metabolismo , Feminino , Glipicanas/química , Glipicanas/isolamento & purificação , Glipicanas/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/isolamento & purificação , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fumar/metabolismo , Sindecana-1/química , Sindecana-1/isolamento & purificação , Sindecana-1/metabolismo , Espectrometria de Massas em Tandem
15.
Mar Drugs ; 14(12)2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27941632

RESUMO

Keratan sulfate (KS) represents an important family of glycosaminoglycans that are critical in diverse physiological processes. Recently, accumulating evidence has provided a wealth of information on the bioactivity of KS, which established it as an attractive candidate for drug development. However, although KS has been widely explored, less attention has been given to its effect on gut microbiota. Therefore, given that gut microbiota plays a pivotal role in health homeostasis and disease pathogenesis, we investigated here in detail the effect of KS on gut microbiota by high-throughput sequencing. As revealed by heatmap and principal component analysis, the mice gut microbiota was readily altered at different taxonomic levels by intake of low (8 mg/kg) and high dosage (40 mg/kg) of KS. Interestingly, KS exerted a differing effect on male and female microbiota. Specifically, KS induced a much more drastic increase in the abundance of Lactobacillus spp. in female (sixteen-fold) versus male mice (two-fold). In addition, combined with alterations in gut microbiota, KS also significantly reduced body weight while maintaining normal gut homeostasis. Altogether, we first demonstrated a sex-dependent effect of KS on gut microbiota and highlighted that it may be used as a novel prebiotic for disease management.


Assuntos
Cartilagem/química , Microbioma Gastrointestinal/efeitos dos fármacos , Sulfato de Queratano/farmacologia , Lactobacillus/efeitos dos fármacos , Tubarões/metabolismo , Extratos de Tecidos/farmacologia , Animais , Dieta , Feminino , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacologia , Sulfato de Queratano/química , Masculino , Camundongos , Extratos de Tecidos/química
16.
Molecules ; 21(5)2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27187337

RESUMO

The low-molecular-weight fucosylated chondroitin sulfate (LFCS) was prepared from native fucosylated chondroitin sulfate (FCS), which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC) was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF), increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and downregulated the matrix metalloproteinases (MMPs) level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Sulfatos de Condroitina/administração & dosagem , Pepinos-do-Mar/química , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Peso Molecular , Metástase Neoplásica , Proteínas de Neoplasias/biossíntese , Transdução de Sinais/efeitos dos fármacos
17.
J Biol Chem ; 289(12): 8194-202, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24509853

RESUMO

Systemic inflammatory illnesses (such as sepsis) are marked by degradation of the endothelial glycocalyx, a layer of glycosaminoglycans (including heparan sulfate, chondroitin sulfate, and hyaluronic acid) lining the vascular lumen. We hypothesized that different pathophysiologic insults would produce characteristic patterns of released glycocalyx fragments. We collected plasma from healthy donors as well as from subjects with respiratory failure due to altered mental status (intoxication, ischemic brain injury), indirect lung injury (non-pulmonary sepsis, pancreatitis), or direct lung injury (aspiration, pneumonia). Mass spectrometry was employed to determine the quantity and sulfation patterns of circulating glycosaminoglycans. We found that circulating heparan sulfate fragments were significantly (23-fold) elevated in patients with indirect lung injury, while circulating hyaluronic acid concentrations were elevated (32-fold) in patients with direct lung injury. N-Sulfation and tri-sulfation of heparan disaccharides were significantly increased in patients with indirect lung injury. Chondroitin disaccharide sulfation was suppressed in all groups with respiratory failure. Plasma heparan sulfate concentrations directly correlated with intensive care unit length of stay. Serial plasma measurements performed in select patients revealed that circulating highly sulfated heparan fragments persisted for greater than 3 days after the onset of respiratory failure. Our findings demonstrate that circulating glycosaminoglycans are elevated in patterns characteristic of the etiology of respiratory failure and may serve as diagnostic and/or prognostic biomarkers of critical illness.


Assuntos
Estado Terminal , Glicosaminoglicanos/sangue , Insuficiência Respiratória/sangue , Adulto , Idoso , Sulfatos de Condroitina/sangue , Feminino , Heparitina Sulfato/sangue , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Insuficiência Respiratória/fisiopatologia
18.
J Biol Chem ; 289(14): 9754-65, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24563485

RESUMO

Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ~40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model.


Assuntos
Receptores ErbB , Fator 2 de Crescimento de Fibroblastos , Heparitina Sulfato/química , Modelos Biológicos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Linhagem Celular Transformada , Receptores ErbB/química , Receptores ErbB/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
19.
Biochim Biophys Acta ; 1840(6): 1993-2003, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24412195

RESUMO

BACKGROUND: Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. METHODS: Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages, and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis, immunoblotting, immunofluorescence and disaccharide analysis. RESULTS: Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1, HS6ST2 and HS6ST3, three heparan sulfate biosynthetic enzymes, within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. CONCLUSIONS: Differentiation of embryonic stem cells markedly changes the proteoglycanome. GENERAL SIGNIFICANCE: The glycosaminoglycan biosynthetic pathway is complex and highly regulated, and therefore, understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Endoderma/citologia , Glicosaminoglicanos/química , Mesoderma/citologia , Glicosaminoglicanos/biossíntese , Hepatócitos/citologia , Humanos , Proteoglicanas/química
20.
Metab Eng ; 27: 92-100, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461828

RESUMO

Chondroitin sulfates, widely used in the treatment of arthritis, are glycosaminoglycans extracted from food animal tissues. As part of our ongoing efforts to separate the food chain from the drug chain, we are examining the possibility of using metabolic engineering to produce chondroitin sulfate in Escherichia coli. Chondroitin is a valuable precursor in the synthesis of chondroitin sulfate. This study proposes a safer and more feasible approach to metabolically engineer chondroitin production by expressing genes from the pathogenic E. coli K4 strain, which natively produces a capsular polysaccharide that shares the similar structure with chondroitin, into the non-pathogenic E. coli BL21 Star™ (DE3) strain. The ePathBrick vectors, allowing for multiple gene addition and expression regulatory signal control, are used for metabolic balancing needed to obtain the maximum potential yield. The resulting engineered strain produced chondroitin, as demonstrated by (1)H NMR and disaccharide analysis, relying on chondrotinase treatment followed by liquid chromatography-mass spectrometry. The highest yield from shake flask experiment was 213mg/L and further increased to 2.4g/L in dissolved oxygen-stat fed batch bioreactor.


Assuntos
Sulfatos de Condroitina , Escherichia coli , Expressão Gênica , Genes Bacterianos , Engenharia Metabólica , Sulfatos de Condroitina/biossíntese , Sulfatos de Condroitina/genética , Escherichia coli/genética , Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA