RESUMO
Although the regulatory mechanisms of dark and light-induced plant morphogenesis have been broadly investigated, the biological process in peanuts has not been systematically explored on single-cell resolution. Herein, 10 cell clusters were characterized using scRNA-seq-identified marker genes, based on 13 409 and 11 296 single cells from 1-week-old peanut seedling leaves grown under dark and light conditions. 6104 genes and 50 transcription factors (TFs) displayed significant expression patterns in distinct cell clusters, which provided gene resources for profiling dark/light-induced candidate genes. Further pseudo-time trajectory and cell cycle evidence supported that dark repressed the cell division and perturbed normal cell cycle, especially the PORA abundances correlated with 11 TFs highly enriched in mesophyll to restrict the chlorophyllide synthesis. Additionally, light repressed the epidermis cell developmental trajectory extending by inhibiting the growth hormone pathway, and 21 TFs probably contributed to the different genes transcriptional dynamic. Eventually, peanut AHL17 was identified from the profile of differentially expressed TFs, which encoded protein located in the nucleus promoted leaf epidermal cell enlargement when ectopically overexpressed in Arabidopsis through the regulatory phytohormone pathway. Overall, our study presents the different gene atlases in peanut etiolated and green seedlings, providing novel biological insights to elucidate light-induced leaf cell development at the single-cell level.
Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Luz , Folhas de Planta , Plântula , Arachis/genética , Arachis/metabolismo , Arachis/crescimento & desenvolvimento , Arachis/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Plântula/genética , Plântula/efeitos da radiação , Plântula/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Escuridão , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Peanut is a significant source of protein for human consumption. One of the primary objectives in peanut breeding is the development of new cultivars with enhanced nutritional values. To further this goal, a genome-wide association study (GWAS) was conducted to analyze seed amino acids contents in 390 diverse peanut accessions collected worldwide, mainly from China, India, and the United States, in 2017 and 2018. These accessions were assessed for their content of 10 different amino acids. Variations in amino acids contents were observed, and arginine (Arg) was found to have the highest average value among all the amino acids quantified. The geographical distribution of the accessions also revealed variations in amino acids contents. High and positive correlation coefficients were observed among the amino acids, suggesting linked metabolic pathways or genetic regulation. A total of 88 single nucleotide polymorphisms (SNPs) spanning various chromosomes were identified, each associated with different amino acids. By using a combination of GWAS, expression anlaysis, and genomic polymorphisim comparisions, the Ahy_A09g041582 (LAC15) gene located on chromrosome A09 was identified as the key candidate which might be involved in plant growth and regulation and may alter amino acids levels. Expression analysis indicated that Ahy_A09g041582 has higher expressions in the shells and seeds than other genes located in the candidate region. This study may help with marker-based breeding of peanuts with higher nutritional value and offers fresh insights into the genetic basis of the amino acids contents of peanuts.
Assuntos
Aminoácidos , Arachis , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Arachis/genética , Arachis/metabolismo , Aminoácidos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética , Sementes/metabolismoRESUMO
Silicon (Si) has been shown to promote peanut growth and yield, but whether Si can enhance the resistance against peanut bacterial wilt (PBW) caused by Ralstonia solanacearum, identified as a soil-borne pathogen, is still unclear. A question regarding whether Si enhances the resistance of PBW is still unclear. Here, an in vitro R. solanacearum inoculation experiment was conducted to study the effects of Si application on the disease severity and phenotype of peanuts, as well as the microbial ecology of the rhizosphere. Results revealed that Si treatment significantly reduced the disease rate, with a decrement PBW severity of 37.50% as compared to non-Si treatment. The soil available Si (ASi) significantly increased by 13.62-44.87%, and catalase activity improved by 3.01-3.10%, which displayed obvious discrimination between non-Si and Si treatments. Furthermore, the rhizosphere soil bacterial community structures and metabolite profiles dramatically changed under Si treatment. Three significantly changed bacterial taxa were observed, which showed significant abundance under Si treatment, whereas the genus Ralstonia genus was significantly suppressed by Si. Similarly, nine differential metabolites were identified to involve into unsaturated fatty acids via a biosynthesis pathway. Significant correlations were also displayed between soil physiochemical properties and enzymes, the bacterial community, and the differential metabolites by pairwise comparisons. Overall, this study reports that Si application mediated the evolution of soil physicochemical properties, the bacterial community, and metabolite profiles in the soil rhizosphere, which significantly affects the colonization of the Ralstonia genus and provides a new theoretical basis for Si application in PBW prevention.
Assuntos
Arachis , Ralstonia solanacearum , Arachis/genética , Ralstonia solanacearum/metabolismo , Silício/metabolismo , Solo/química , Rizosfera , Bactérias/metabolismo , Doenças das Plantas/microbiologiaRESUMO
Single-cell RNA-seq (scRNA-seq) has been highlighted as a powerful tool for the description of human cell transcriptome, but the technology has not been broadly applied in plant cells. Herein, we describe the successful development of a robust protoplast cell isolation system in the peanut leaf. A total of 6,815 single cells were divided into eight cell clusters based on reported marker genes by applying scRNA-seq. Further, a pseudo-time analysis was used to describe the developmental trajectory and interaction network of transcription factors (TFs) of distinct cell types during leaf growth. The trajectory enabled re-investigation of the primordium-driven development processes of the mesophyll and epidermis. These results suggest that palisade cells likely differentiate into spongy cells, while the epidermal cells originated earlier than the primordium. Subsequently, the developed method integrated multiple technologies to efficiently validate the scRNA-seq result in a homogenous cell population. The expression levels of several TFs were strongly correlated with epidermal ontogeny in accordance with obtained scRNA-seq values. Additionally, peanut AHL23 (AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN 23), which is localized in nucleus, promoted leaf growth when ectopically expressed in Arabidopsis by modulating the phytohormone pathway. Together, our study displays that application of scRNA-seq can provide new hypotheses regarding cell differentiation in the leaf blade of Arachis hypogaea. We believe that this approach will enable significant advances in the functional study of leaf blade cells in the allotetraploid peanut and other plant species.
Assuntos
Arachis , Transcriptoma , Arachis/genética , Perfilação da Expressão Gênica , Folhas de Planta/genética , RNA-Seq , Fatores de Transcrição/genética , Transcriptoma/genéticaRESUMO
Peanut (Arachis hypogaea L.) is a staple crop in semiarid tropical and subtropical regions. Although the genome of peanut has been fully sequenced, the current gene annotations are still incomplete. New technologies in genomics and proteomics have resulted in the emergence of proteogenomics, which can integrate genomic, transcriptomic, and proteomic data for improving gene annotation. In the present study, we collected RNA-seq and proteomic data from multiple tissues such as seed, shell, and gynophore of peanut and utilized a proteogenomic approach to improve the gene annotation of peanut based on these data. A total of 1â¯935â¯655â¯904 RNA-seq reads and 7â¯490â¯280 MS/MS spectra were collected. Ultimately, 13â¯767 annotated genes were found with evidence at the protein level, and seven novel protein-coding genes were found with both RNA-seq and proteomics evidence. In addition, 35 gene models were updated based on proteomics data. Proteogenomic approaches improved the gene annotation in certain aspects by integrating both RNA-seq and proteomic data. We expect that these approaches could help improve existing genome annotations of other species.
Assuntos
Proteogenômica , Arachis/genética , Anotação de Sequência Molecular , Proteômica , Espectrometria de Massas em Tandem , Fluxo de TrabalhoRESUMO
BACKGROUND: Microsatellites, or simple sequence repeats (SSRs), represent important DNA variations that are widely distributed across the entire plant genome and can be used to develop SSR markers, which can then be used to conduct genetic analyses and molecular breeding. Cultivated peanut (A. hypogaea L.), an important oil crop worldwide, is an allotetraploid (AABB, 2n = 4× = 40) plant species. Because of its complex genome, genomic marker development has been very challenging. However, sequencing of cultivated peanut genome allowed us to develop genomic markers and construct a high-density physical map. RESULTS: A total of 8,329,496 SSRs were identified, including 3,772,653, 4,414,961, and 141,882 SSRs that were distributed in subgenome A, B, and nine scaffolds, respectively. Based on the flanking sequences of the identified SSRs, a total of 973,984 newly developed SSR markers were developed in subgenome A (462,267), B (489,394), and nine scaffolds (22,323), with an average density of 392.45 markers per Mb. In silico PCR evaluation showed that an average of 88.32% of the SSR markers generated only one in silico-specific product in two tetraploid A. hypogaea varieties, Tifrunner and Shitouqi. A total of 39,599 common SSR markers were identified among the two A. hypogaea varieties and two progenitors, A. duranensis and A. ipaensis. Additionally, an amplification effectiveness of 44.15% was observed by real PCR validation. Moreover, a total of 1276 public SSR loci were integrated with the newly developed SSR markers. Finally, a previously known leaf spot quantitative trait locus (QTL), qLLS_T13_A05_7, was determined to be in a 1.448-Mb region on chromosome A05. In this region, a total of 819 newly developed SSR markers were located and 108 candidate genes were detected. CONCLUSIONS: The availability of these newly developed and public SSR markers both provide a large number of molecular markers that could potentially be used to enhance the process of trait genetic analyses and improve molecular breeding strategies for cultivated peanut.
Assuntos
Arachis/genética , Genômica , Repetições de Microssatélites/genética , Simulação por Computador , Genoma de Planta/genéticaRESUMO
Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.
Assuntos
Arachis , Genoma de Planta/fisiologia , Família Multigênica/fisiologia , Óleos de Plantas/metabolismo , Proteínas de Plantas , Tetraploidia , Arachis/genética , Arachis/metabolismo , Humanos , Óleo de Amendoim , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Peanuts with high oleic acid content are usually considered to be beneficial for human health and edible oil storage. In breeding practice, peanut lines with high monounsaturated fatty acids are selected using fatty acid desaturase 2 (FAD2), which is responsible for the conversion of oleic acid (C18:1) to linoleic acid (C18:2). Here, comparative transcriptomics were used to analyze the global gene expression profile of high- and normal-oleic peanut cultivars at six time points during seed development. First, the mutant type of FAD2 was determined in the high-oleic peanut (H176). The result suggested that early translation termination occurred simultaneously in the coding sequence of FAD2-A and FAD2-B, and the cultivar H176 is capable of utilizing a potential germplasm resource for future high-oleic peanut breeding. Furthermore, transcriptomic analysis identified 74 differentially expressed genes (DEGs) involved in lipid metabolism in high-oleic peanut seed, of which five DEGs encoded the fatty acid desaturase. Aradu.XM2MR belonged to the homologous gene of stearoyl-ACP (acyl carrier protein) desaturase 2 (SAD2) that converted the C18:0 into C18:1. Further subcellular localization studies indicated that FAD2 was located at the endoplasmic reticulum (ER), and Aradu.XM2MR was targeted to the plastid in Arabidopsis protoplast cells. To examine the dynamic mechanism of this finding, we focused on the peroxidase (POD)-mediated fatty acid (FA) degradation pathway. The fad2 mutant significantly increased the POD activity and H2O2 concentration at the early stage of seed development, implying that redox signaling likely acted as a messenger to connect the signaling transduction between the high-oleic content and Aradu.XM2MR transcription level. Taken together, transcriptome analysis revealed the feedback mechanism of SAD2 (Aradu.XM2MR) associated with FAD2 mutation during the seed developmental stage, which could provide a potential peanut breeding strategy based on identified candidate genes to improve the content of oleic acid.
Assuntos
Arachis/genética , Arachis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Ácido Oleico/metabolismo , Transcriptoma , Sequência de Aminoácidos , Arachis/classificação , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Genoma de Planta , Metabolismo dos Lipídeos , Oxigenases de Função Mista/metabolismo , Modelos Biológicos , Filogenia , Sementes/genética , Sementes/metabolismoRESUMO
BACKGROUND: Many large-effect quantitative trait loci (QTLs) for yield and disease resistance related traits have been identified in different mapping populations of peanut (Arachis hypogaea L.) under multiple environments. However, only a limited number of QTLs have been used in marker-assisted selection (MAS) because of unfavorable epistatic interactions between QTLs in different genetic backgrounds. Thus, it is essential to identify consensus QTLs across different environments and genetic backgrounds for use in MAS. Here, we used QTL meta-analysis to identify a set of consensus QTLs for yield and disease resistance related traits in peanut. RESULTS: A new integrated consensus genetic map with 5874 loci was constructed. The map comprised 20 linkage groups (LGs) and was up to a total length of 2918.62 cM with average marker density of 2.01 loci per centimorgan (cM). A total of 292 initial QTLs were projected on the new consensus map, and 40 meta-QTLs (MQTLs) for yield and disease resistance related traits were detected on four LGs. The genetic intervals of these consensus MQTLs varied from 0.20 cM to 7.4 cM, which is narrower than the genetic intervals of the initial QTLs, meaning they may be suitable for use in MAS. Importantly, a region of the map that previously co-localized multiple major QTLs for pod traits was narrowed from 3.7 cM to 0.7 cM using an overlap region of four MQTLs for yield related traits on LG A05, which corresponds to a physical region of about 630.3 kb on the A05 pseudomolecule of peanut, including 38 annotated candidate genes (54 transcripts) related to catalytic activity and metabolic process. Additionally, one major MQTL for late leaf spot (LLS) was identified in a region of about 0.38 cM. BLAST searches identified 26 candidate genes (30 different transcripts) in this region, some of which were annotated as related to regulation of disease resistance in different plant species. CONCLUSIONS: Combined with the high-density marker consensus map, all the detected MQTLs could be useful in MAS. The biological functions of the 64 candidate genes should be validated to unravel the molecular mechanisms of yield and disease resistance in peanut.
Assuntos
Arachis/genética , Mapeamento Cromossômico/métodos , Sequência Consenso/genética , Resistência à Doença/genética , Ligação Genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Estudos de Associação GenéticaRESUMO
KEY MESSAGE: A first creation of high oleic acid peanut varieties by using transcription activator-like effecter nucleases (TALENs) mediated targeted mutagenesis of Fatty Acid Desaturase 2 (FAD2). Transcription activator like effector nucleases (TALENs), which allow the precise editing of DNA, have already been developed and applied for genome engineering in diverse organisms. However, they are scarcely used in higher plant study and crop improvement, especially in allopolyploid plants. In the present study, we aimed to create targeted mutagenesis by TALENs in peanut. Targeted mutations in the conserved coding sequence of Arachis hypogaea fatty acid desaturase 2 (AhFAD2) were created by TALENs. Genetic stability of AhFAD2 mutations was identified by DNA sequencing in up to 9.52 and 4.11% of the regeneration plants at two different targeted sites, respectively. Mutation frequencies among AhFAD2 mutant lines were significantly correlated to oleic acid accumulation. Genetically, stable individuals of positive mutant lines displayed a 0.5-2 fold increase in the oleic acid content compared with non-transgenic controls. This finding suggested that TALEN-mediated targeted mutagenesis could increase the oleic acid content in edible peanut oil. Furthermore, this was the first report on peanut genome editing event, and the obtained high oleic mutants could serve for peanut breeding project.
Assuntos
Arachis/metabolismo , Ácidos Graxos Dessaturases/genética , Ácido Oleico/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Arachis/genética , Ácidos Graxos Dessaturases/metabolismo , Mutagênese , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ligação Proteica , Sementes/metabolismoRESUMO
Peanuts (Arachis hypogaea L.) are an important oilseed crop, containing high contents of protein and fatty acids (FA). The major components of FA found in peanut oil are unsaturated FAs, including oleic acid (OA, C18:1) and linoleic acid (LOA, C18:2). Moreover, the high content of OA in peanut oil is beneficial for human health and long-term storage due to its antioxidant activity. However, the dynamic changes in proteomics related to OA accumulation during seed development still remain largely unexplored. In the present study, a comparative proteome analysis based on iTRAQ (isobaric Tags for Relative and Absolute Quantification) was performed to identify the critical candidate factors involved in OA formation. A total of 389 differentially expressed proteins (DEPs) were identified between high-oleate cultivar Kainong176 and low-oleate cultivar Kainong70. Among these DEPs, 201 and 188 proteins were upregulated and downregulated, respectively. In addition, these DEPs were categorized into biosynthesis pathways of unsaturated FAs at the early stage during the high-oleic peanut seed development, and several DEPs involved in lipid oxidation pathway were found at the stage of seed maturation. Meanwhile, 28 DEPs were sporadically distributed in distinct stages of seed formation, and their molecular functions were directly correlated to FA biosynthesis and degradation. Fortunately, the expression of FAB2 (stearoyl-acyl carrier protein desaturase), the rate-limiting enzyme in the upstream biosynthesis process of OA, was significantly increased in the early stage and then decreased in the late stage of seed development in the high-oleate cultivar Kainong176. Furthermore, real-time PCR verified the expression pattern of FAB2 at the mRNA level, which was consistent with its protein abundance. However, opposite results were found for the low-oleate cultivar Kainong70. Overall, the comparative proteome analysis provided valuable insight into the molecular dynamics of OA accumulation during peanut seed development.
Assuntos
Arachis/metabolismo , Ácido Oleico/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Arachis/anatomia & histologia , Arachis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Óleos de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/anatomia & histologiaRESUMO
A characteristic feature of peanut is the subterranean fructification, geocarpy, in which the gynophore ('peg'), a specialized organ that transitions from upward growth habit to downward outgrowth upon fertilization, drives the developing pod into the soil for subsequent development underground. As a step towards understanding this phenomenon, we explore the developmental dynamics of the peanut pod transcriptome at 11 successive stages. We identified 110 217 transcripts across developmental stages and quantified their abundance along a pod developmental gradient in pod wall. We found that the majority of transcripts were differentially expressed along the developmental gradient as well as identified temporal programs of gene expression, including hundreds of transcription factors. Thought to be an adaptation to particularly harsh subterranean environments, both up- and down-regulated gene sets in pod wall were enriched for response to a broad array of stimuli, like gravity, light and subterranean environmental factors. We also identified hundreds of transcripts associated with gravitropism and photomorphogenesis, which may be involved in the geocarpy. Collectively, this study forms a transcriptional baseline for geocarpy in peanut as well as provides a considerable body of evidence that transcriptional regulation in peanut aerial and subterranean fruits is complex.
Assuntos
Arachis/genética , Regulação da Expressão Gênica de Plantas , Gravitropismo/genética , Transcriptoma , Arachis/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Ontologia Genética , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNARESUMO
The peanut is a special plant for its aerial flowering but subterranean fructification. The failure of peg penetration into the soil leads to form aerial pod and finally seed abortion. However, the mechanism of seed abortion during aerial pod development remains obscure. Here, a comparative transcriptome analysis between aerial and subterranean pods at different developmental stages was produced using a customized NimbleGen microarray representing 36,158 unigenes. By comparing 4 consecutive time-points, totally 6,203 differentially expressed genes, 4,732 stage-specific expressed genes and 2,401 specific expressed genes only in aerial or subterranean pods were identified in this study. Functional annotation showed their mainly involvement in biosynthesis, metabolism, transcription regulation, transporting, stress response, photosynthesis, signal transduction, cell division, apoptosis, embryonic development, hormone response and light signaling, etc. Emphasis was focused on hormone response, cell apoptosis, embryonic development and light signaling relative genes. These genes might function as potential candidates to provide insights into seed abortion during aerial pod development. Ten candidate genes were validated by Real-time RT-PCR. Additionally, consistent with up-regulation of auxin response relative genes in aerial pods, endogenous IAA content was also significantly increased by HPLC analysis. This study will further provide new molecular insight that auxin and auxin response genes potentially contribute to peanut seed and pod development.
Assuntos
Arachis/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Componentes Aéreos da Planta/metabolismo , Transcriptoma , Arachis/genética , Análise por Conglomerados , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/crescimento & desenvolvimentoRESUMO
Peanut bacterial wilt (PBW) caused by the pathogen Ralstonia solanacearum severely affects the growth and yield potential of peanut crop. In this study, we synthesized silica nanoparticles (SiO2 NPs), a prospective efficient management approach to control PBW, and conducted a hydroponic experiment to investigate the effects of different SiO2 NPs treatments (i.e., 0, 100, and 500 mg L-1 as NP0, NP100, and NP500, respectively) on promoting plant growth and resistance to R. solanacearum. Results indicated that the disease indices of NP100 and NP500 decreased by 51.5 % and 55.4 % as compared with NP0 under R. solanacearum inoculation, respectively, while the fresh and dry weights and shoot length of NP100 and NP500 increased by 7.62-42.05 %, 9.45-32.06 %, and 2.37-17.83 %, respectively. Furthermore, SiO2 NPs induced an improvement in physio-biochemical enzymes (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and lipoxygenase) which eliminated the excess production of hydrogen peroxide, superoxide anions, and malondialdehyde to alleviate PBW stress. Notably, the targeted metabolomic analysis indicated that SiO2 NPs enhanced salicylic acid (SA) contents, which involved the induction of systemic acquired resistance (SAR). Moreover, the transcriptomic analysis revealed that SiO2 NPs modulated the expression of multiple transcription factors (TFs) involved in the hormone pathway, such as AHLs, and the identification of hormone pathways related to plant defense responses, such as the SA pathway, which activated SA-dependent defense mechanisms. Meanwhile, the up-regulated expression of the SA-metabolism gene, salicylate carboxymethyltransferase (SAMT), initiated SAR to promote PBW resistance. Overall, our findings revealed that SiO2 NPs, functioning as a plant elicitor, could effectively modulate physiological enzyme activities and enhance SA contents through the regulation of SA-metabolism genes to confer the PBW resistance in peanuts, which highlighted the potential of SiO2 NPs for sustainable agricultural practices.
Assuntos
Arachis , Dióxido de Silício , Arachis/metabolismo , Estudos Prospectivos , Plantas/metabolismo , Ácido Salicílico , Hormônios , Doenças das Plantas/microbiologiaRESUMO
Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement.
Assuntos
Arachis , Estudo de Associação Genômica Ampla , Arachis/genética , Mapeamento Cromossômico , Fenótipo , Genômica , Genoma de Planta/genéticaRESUMO
The failure of peg penetration into the soil leads to seed abortion in peanut. Knowledge of genes involved in these processes is comparatively deficient. Here, we used RNA-seq to gain insights into transcriptomes of aerial and subterranean pods. More than 2 million transcript reads with an average length of 396 bp were generated from one aerial (AP) and two subterranean (SP1 and SP2) pod libraries using pyrosequencing technology. After assembly, sets of 49 632, 49 952 and 50 494 from a total of 74 974 transcript assembly contigs (TACs) were identified in AP, SP1 and SP2, respectively. A clear linear relationship in the gene expression level was observed between these data sets. In brief, 2194 differentially expressed TACs with a 99.0% true-positive rate were identified, among which 859 and 1068 TACs were up-regulated in aerial and subterranean pods, respectively. Functional analysis showed that putative function based on similarity with proteins catalogued in UniProt and gene ontology term classification could be determined for 59 342 (79.2%) and 42 955 (57.3%) TACs, respectively. A total of 2968 TACs were mapped to 174 KEGG pathways, of which 168 were shared by aerial and subterranean transcriptomes. TACs involved in photosynthesis were significantly up-regulated and enriched in the aerial pod. In addition, two senescence-associated genes were identified as significantly up-regulated in the aerial pod, which potentially contribute to embryo abortion in aerial pods, and in turn, to cessation of swelling. The data set generated in this study provides evidence for some functional genes as robust candidates underlying aerial and subterranean pod development and contributes to an elucidation of the evolutionary implications resulting from fruit development under light and dark conditions.
Assuntos
Arachis/crescimento & desenvolvimento , Arachis/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Componentes Aéreos da Planta/crescimento & desenvolvimento , Análise de Sequência de RNA , TranscriptomaRESUMO
The semiparametric accelerated hazards mixture cure model provides a useful alternative to analyze survival data with a cure fraction if covariates of interest have a gradual effect on the hazard of uncured patients. However, the application of the model may be hindered by the computational intractability of its estimation method due to non-smooth estimating equations involved. We propose a new semiparametric estimation method based on a smooth estimating equation for the model and demonstrate that the new method makes the parameter estimation more tractable without loss of efficiency. The proposed method is used to fit the model to a SEER breast cancer data set.
RESUMO
Fatty Acid Desaturase 2 (FAD2) controls the conversion of oleic acids into linoleic acids. Mutations in FAD2 not only increase the high-oleic content, but also repress the leaf growth. However, the mechanism by which FAD2 regulates the growth pathway has not been elucidated in peanut leaves with single-cell resolution. In this study, we isolated fad2 mutant leaf protoplast cells to perform single-cell RNA sequencing. Approximately 24,988 individual cells with 10,249 expressed genes were classified into five major cell types. A comparative analysis of 3495 differentially expressed genes (DEGs) in distinct cell types demonstrated that fad2 inhibited the expression of the cytokinin synthesis gene LOG in vascular cells, thereby repressing leaf growth. Further, pseudo-time trajectory analysis indicated that fad2 repressed leaf cell differentiation, and cell-cycle evidence displayed that fad2 perturbed the normal cell cycle to induce the majority of cells to drop into the S phase. Additionally, important transcription factors were filtered from the DEG profiles that connected the network involved in high-oleic acid accumulation (WRKY6), activated the hormone pathway (WRKY23, ERF109), and potentially regulated leaf growth (ERF6, MYB102, WRKY30). Collectively, our study describes different gene atlases in high-oleic and normal peanut seedling leaves, providing novel biological insights to elucidate the molecular mechanism of the high-oleic peanut-associated agronomic trait at the single-cell level.
Assuntos
Arachis , Ácidos Graxos Dessaturases , Arachis/genética , Arachis/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Análise da Expressão Gênica de Célula Única , Mutação/genética , Ácido Oleico/metabolismoRESUMO
Compared to the proportional hazards model and accelerated failure time model, the accelerated hazards model has a unique property in its application, in that it can allow gradual effects of the treatment. However, its application is still very limited, partly due to the complexity of existing semiparametric estimation methods. We propose a new semiparametric estimation method based on the induced smoothing and rank type estimates. The parameter estimates and their variances can be easily obtained from the smoothed estimating equation; thus it is easy to use in practice. Our numerical study shows that the new method is more efficient than the existing methods with respect to its variance estimation and coverage probability. The proposed method is employed to reanalyze a data set from a brain tumor treatment study.
RESUMO
High oleic acid (OA) peanut seeds (PS) can be beneficial for human health. However, chemical variations in high-OA PS after domestic cooking are not fully understood. In order to investigate the impact of different cooking methods on the chemical profile of high-OA PS, widely established metabolomics approach was employed to identify the relative contents of PS metabolites. Herein, 630 metabolites within 27 categories were characterized in PS, of which 141, 157, 402 differential metabolites were observed in each treatment group (boiling, baking, and frying) when compared to the raw seed. Accordingly, bioactive substances were maximally preserved in baked high-OA PS. Further conventional methods (HPLC-UV/GC-MS) quantified the absolute composition of amino and fatty acids, verifying the reliability of metabolomic analysis. Collectively, the understanding of the phytochemical substances in relation to the domestic cooking method established a foundation for future high-OA PS processing.