Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO Rep ; 25(5): 2441-2478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649663

RESUMO

Ago2 differentially regulates oncogenic and tumor-suppressive miRNAs in cancer cells. This discrepancy suggests a secondary event regulating Ago2/miRNA action in a context-dependent manner. We show here that a positive charge of Ago2 K212, that is preserved by SIR2-mediated Ago2 deacetylation in cancer cells, is responsible for the direct interaction between Ago2 and Caveolin-1 (CAV1). Through this interaction, CAV1 sequesters Ago2 on the plasma membranes and regulates miRNA-mediated translational repression in a compartment-dependent manner. Ago2/CAV1 interaction plays a role in miRNA-mediated mRNA suppression and in miRNA release via extracellular vesicles (EVs) from tumors into the circulation, which can be used as a biomarker of tumor progression. Increased Ago2/CAV1 interaction with tumor progression promotes aggressive cancer behaviors, including metastasis. Ago2/CAV1 interaction acts as a secondary event in miRNA-mediated suppression and increases the complexity of miRNA actions in cancer.


Assuntos
Proteínas Argonautas , Caveolina 1 , MicroRNAs , Metástase Neoplásica , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Caveolina 1/metabolismo , Caveolina 1/genética , Humanos , Linhagem Celular Tumoral , Animais , Regulação Neoplásica da Expressão Gênica , Vesículas Extracelulares/metabolismo , Camundongos , Ligação Proteica , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Sirtuína 2/metabolismo , Sirtuína 2/genética
3.
Int J Cancer ; 143(6): 1440-1455, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29658109

RESUMO

Cells expressing mesenchymal/basal phenotypes in tumors have been associated with stem cell properties. Cancer stem cells (CSCs) are often resistant to conventional chemotherapy. We explored overcoming mesenchymal CSC resistance to chemotherapeutic agents. Our goal was to reduce CSC numbers in vivo, in conjunction with chemotherapy, to reduce tumor burden. Analysis of clinical samples demonstrated that COX-2/PGE2 /EP4 signaling is elevated in basal-like and chemoresistant breast carcinoma and is correlated with survival and relapse of breast cancer. EP4 antagonism elicts a striking shift of breast cancer cells from a mesenchymal/CSC state to a more epithelial non-CSC state. The transition was mediated by EP4 antagonist-induced extracellular vesicles [(EVs)/exosomes] which removed CSC markers, mesenchymal markers, integrins, and drug efflux transporters from the CSCs. In addition, EP4 antagonism-induced CSC EVs/exosomes can convert tumor epithelial/non-CSCs to mesenchymal/CSCs able to give rise to tumors and to promote tumor cell dissemination. Because of its ability to induce a CSC-to-non-CSC transition, EP4 antagonist treatment in vivo reduced the numbers of CSCs within tumors and increased tumor chemosensitivity. EP4 antagonist treatment enhances tumor response to chemotherapy by reducing the numbers of chemotherapy-resistant CSCs available to repopulate the tumor. EP4 antagonism can collaborate with conventional chemotherapy to reduce tumor burden.


Assuntos
Neoplasias da Mama/patologia , Ciclo-Oxigenase 2/química , Dinoprostona/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/patologia , Células-Tronco Neoplásicas/patologia , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Transição Epitelial-Mesenquimal , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Stem Cells ; 35(2): 425-444, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27506158

RESUMO

Prostaglandin E2 (PGE2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE2 /prostaglandin E receptor 4 (EP4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFß signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP4 ) antagonism. EP4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFß and PI3K/Akt pathways. EP4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE2 /EP4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444.


Assuntos
Dinoprostona/metabolismo , Vesículas Extracelulares/metabolismo , Glândulas Mamárias Humanas/citologia , Microdomínios da Membrana/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Biomarcadores/metabolismo , Cavéolas/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Forma Celular , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Integrinas/metabolismo , Microdomínios da Membrana/ultraestrutura , Camundongos Endogâmicos C57BL , Prostaglandina-E Sintases/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Esferoides Celulares/citologia , Proteínas rab de Ligação ao GTP/metabolismo
5.
Mol Cell Biol ; 27(6): 2027-36, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17210646

RESUMO

Steroids are synthesized in adrenal glands and gonads under the control of pituitary peptides. These peptides bind to cell surface receptors to activate the cyclic AMP (cAMP) signaling pathway leading to an increase of steroidogenic gene expression. Exactly how cAMP activates steroidogenic gene expression is not clear, except for the knowledge that transcription factor SF-1 plays a key role. Investigating the factors participating in SF-1 action, we found that c-Jun and homeodomain-interacting protein kinase 3 (HIPK3) were required for basal and cAMP-stimulated expression of one major steroidogenic gene, CYP11A1. HIPK3 enhanced SF-1 activity, and c-Jun was required for the functional interaction of HIPK3 with SF-1. Furthermore, after cAMP stimulation, both c-Jun and Jun N-terminal kinase (JNK) were phosphorylated through HIPK3. These phosphorylations were important for SF-1 activity and CYP11A1 expression. Thus, we have defined HIPK3-mediated JNK activity and c-Jun phosphorylation as important events that increase SF-1 activity for CYP11A1 transcription in response to cAMP. This finding has linked three common factors, HIPK3, JNK, and c-Jun, to the cAMP signaling pathway leading to increased steroidogenic gene expression.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , AMP Cíclico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-jun/genética , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/genética , Fator Esteroidogênico 1 , Fatores de Transcrição/genética , Transcrição Gênica/genética
6.
Stem Cells Transl Med ; 9(4): 499-517, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31943851

RESUMO

Mesenchymal stem cells (MSCs) have been used in clinical studies to treat neurological diseases and damage. However, implanted MSCs do not achieve their regenerative effects by differentiating into and replacing neural cells. Instead, MSC secretome components mediate the regenerative effects of MSCs. MSC-derived extracellular vesicles (EVs)/exosomes carry cargo responsible for rescuing brain damage. We previously showed that EP4 antagonist-induced MSC EVs/exosomes have enhanced regenerative potential to rescue hippocampal damage, compared with EVs/exosomes from untreated MSCs. Here we show that EP4 antagonist-induced MSC EVs/exosomes promote neurosphere formation in vitro and increase neurogenesis and neuritogenesis in damaged hippocampi; basal MSC EVs/exosomes do not contribute to these regenerative effects. 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) levels in EP4 antagonist-induced MSC EVs/exosomes are 20-fold higher than CNP levels in basal MSC EVs/exosomes. Decreasing elevated exosomal CNP levels in EP4 antagonist-induced MSC EVs/exosomes reduced the efficacy of these EVs/exosomes in promoting ß3-tubulin polymerization and in converting toxic 2',3'-cAMP into neuroprotective adenosine. CNP-depleted EP4 antagonist-induced MSC EVs/exosomes lost the ability to promote neurogenesis and neuritogenesis in damaged hippocampi. Systemic administration of EV/exosomes from EP4 -antagonist derived MSC EVs/exosomes repaired cognition, learning, and memory deficiencies in mice caused by hippocampal damage. In contrast, CNP-depleted EP4 antagonist-induced MSC EVs/exosomes failed to repair this damage. Exosomal CNP contributes to the ability of EP4 antagonist-elicited MSC EVs/exosomes to promote neurogenesis and neuritogenesis in damaged hippocampi and recovery of cognition, memory, and learning. This experimental approach should be generally applicable to identifying the role of EV/exosomal components in eliciting a variety of biological responses.


Assuntos
2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Lesões Encefálicas/terapia , Região CA1 Hipocampal/metabolismo , Cognição , Exossomos/enzimologia , Aprendizagem , Células-Tronco Mesenquimais/enzimologia , Neuritos/metabolismo , Neurogênese , Animais , Lesões Encefálicas/patologia , Cognição/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas do Domínio Duplacortina , Exossomos/efeitos dos fármacos , Humanos , Isoindóis/farmacologia , Aprendizagem/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo , Polimerização , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Sulfonamidas/farmacologia , Tubulina (Proteína)/metabolismo
7.
Cancer Res ; 67(11): 5354-61, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17545616

RESUMO

Adenovirus vectors have a number of advantages for gene therapy. However, because of their lack of tumor tropism and their preference for liver infection following systemic administration, they cannot be used for systemic attack on metastatic disease. Many epithelial tumors (e.g., colon, lung, and breast) express carcinoembryonic antigen (CEA). To block the natural hepatic tropism of adenovirus and to "retarget" the virus to CEA-expressing tumors, we used a bispecific adapter protein (sCAR-MFE), which fuses the ectodomain of the coxsackie/adenovirus receptor (sCAR) with a single-chain anti-CEA antibody (MFE-23). sCAR-MFE untargets adenovirus-directed luciferase transgene expression in the liver by >90% following systemic vector administration. Moreover, sCAR-MFE can "retarget" adenovirus to CEA-positive epithelial tumor cells in cell culture, in s.c. tumor grafts, and in hepatic tumor grafts. The sCAR-MFE bispecific adapter should, therefore, be a powerful agent to retarget adenovirus vectors to epithelial tumor metastases.


Assuntos
Adenoviridae/fisiologia , Antígeno Carcinoembrionário/imunologia , Marcação de Genes/métodos , Terapia Genética/métodos , Fragmentos de Imunoglobulinas/farmacologia , Neoplasias Hepáticas Experimentais/terapia , Receptores Virais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Vetores Genéticos/genética , Fragmentos de Imunoglobulinas/imunologia , Fragmentos de Imunoglobulinas/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/virologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/virologia , Camundongos , Camundongos Nus , Receptores Virais/biossíntese , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
8.
Stem Cells Transl Med ; 8(7): 707-723, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30891948

RESUMO

Adult brains have limited regenerative capacity. Consequently, both brain damage and neurodegenerative diseases often cause functional impairment for patients. Mesenchymal stem cells (MSCs), one type of adult stem cells, can be isolated from various adult tissues. MSCs have been used in clinical trials to treat human diseases and the therapeutic potentials of the MSC-derived secretome and extracellular vesicles (EVs) have been under investigation. We found that blocking the prostaglandin E2 /prostaglandin E2 receptor 4 (PGE2 /EP4 ) signaling pathway in MSCs with EP4 antagonists increased EV release and promoted the sorting of specific proteins, including anti-inflammatory cytokines and factors that modify astrocyte function, blood-brain barrier integrity, and microglial migration into the damaged hippocampus, into the EVs. Systemic administration of EP4 antagonist-elicited MSC EVs repaired deficiencies of cognition, learning and memory, inhibited reactive astrogliosis, attenuated extensive inflammation, reduced microglial infiltration into the damaged hippocampus, and increased blood-brain barrier integrity when administered to mice following hippocampal damage. Stem Cells Translational Medicine 2019.


Assuntos
Barreira Hematoencefálica , Cognição , Vesículas Extracelulares , Hipocampo , Isoindóis/farmacologia , Aprendizagem , Células-Tronco Mesenquimais/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Recuperação de Função Fisiológica , Sulfonamidas/farmacologia , Adulto , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Hipocampo/lesões , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Prostaglandina E Subtipo EP4/metabolismo
9.
J Vis Exp ; (124)2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28605392

RESUMO

Cells can communicate via exosomes, ~100-nm extracellular vesicles (EVs) that contain proteins, lipids, and nucleic acids. Non-adherent/mesenchymal mammary epithelial cell (NAMEC)-derived extracellular vesicles can be isolated from NAMEC medium via differential ultracentrifugation. Based on their density, EVs can be purified via ultracentrifugation at 110,000 x g. The EV preparation from ultracentrifugation can be further separated using a continuous density gradient to prevent contamination with soluble proteins. The purified EVs can then be further evaluated using nanoparticle-tracking analysis, which measures the size and number of vesicles in the preparation. The extracellular vesicles with a size ranging from 50 to 150 nm are exosomes. The NAMEC-derived EVs/exosomes can be ingested by mammary epithelial cells, which can be measured by flow cytometry and confocal microscopy. Some mammary stem cell properties (e.g., mammary gland-forming ability) can be transferred from the stem-like NAMECs to mammary epithelial cells via the NAMEC-derived EVs/exosomes. Isolated primary EpCAMhi/CD49flo luminal mammary epithelial cells cannot form mammary glands after being transplanted into mouse fat pads, while EpCAMlo/CD49fhi basal mammary epithelial cells form mammary glands after transplantation. Uptake of NAMEC-derived EVs/exosomes by EpCAMhi/CD49flo luminal mammary epithelial cells allows them to generate mammary glands after being transplanted into fat pads. The EVs/exosomes derived from stem-like mammary epithelial cells transfer mammary gland-forming ability to EpCAMhi/CD49flo luminal mammary epithelial cells.


Assuntos
Comunicação Celular , Exossomos/fisiologia , Vesículas Extracelulares/fisiologia , Glândulas Mamárias Animais/citologia , Animais , Molécula de Adesão da Célula Epitelial/análise , Células Epiteliais/fisiologia , Feminino , Integrina alfa6/análise , Camundongos , Camundongos Endogâmicos C57BL , Ultracentrifugação
10.
Cancer Discov ; 2(9): 840-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22763855

RESUMO

UNLABELLED: Mesenchymal cells of the tumor-associated stroma are critical determinants of carcinoma cell behavior. We focus here on interactions of carcinoma cells with mesenchymal stem cells (MSC), which are recruited to the tumor stroma and, once present, are able to influence the phenotype of the carcinoma cells. We find that carcinoma cell-derived interleukin-1 (IL-1) induces prostaglandin E(2) (PGE(2)) secretion by MSCs. The resulting PGE(2) operates in an autocrine manner, cooperating with ongoing paracrine IL-1 signaling, to induce expression of a group of cytokines by the MSCs. The PGE(2) and cytokines then proceed to act in a paracrine fashion on the carcinoma cells to induce activation of ß-catenin signaling and formation of cancer stem cells. These observations indicate that MSCs and derived cell types create a cancer stem cell niche to enable tumor progression via release of PGE(2) and cytokines. SIGNIFICANCE: Although PGE2 has been implicated time and again in fostering tumorigenesis, its effects on carcinoma cells that contribute specifically to tumor formation are poorly understood. Here we show that tumor cells are able to elicit a strong induction of the COX-2/microsomal prostaglandin-E synthase-1 (mPGES-1)/PGE(2) axis in MSCs recruited to the tumor-associated stroma by releasing IL-1, which in turn elicits a mesenchymal/stem cell­like phenotype in the carcinoma cells.


Assuntos
Dinoprostona/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco , Aldeído Desidrogenase/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/biossíntese , Citocinas/biossíntese , Dinoprostona/biossíntese , Humanos , Interleucina-1/biossíntese , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transdução de Sinais , beta Catenina/metabolismo
11.
Cancer Res ; 69(2): 554-64, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19147569

RESUMO

Unresectable hepatic colorectal cancer (CRC) metastases are a leading cause of cancer mortality. These tumors and other epithelial tumors often express both cyclooxygenase-2 (COX-2) and carcinoembryonic antigen (CEA). Because adenovirus (Ad) vectors infect the liver and lack tumor tropism, they cannot be used for systemic therapy of hepatic metastases. We used COX-2 transcriptional restriction, in combination with transductional Ad hepatic untargeting and tumor retargeting by a bispecific adapter, sCARhMFE, composed of sCAR [the coxsackie/Ad receptor (CAR) ectodomain] and MFE-23 (a single-chain anti-CEA antibody), to untarget liver after i.v. administration of Ad vectors expressing firefly luciferase and to retarget virus to hepatic colorectal tumor xenografts and non-small cell lung tumor xenografts. To improve both liver untargeting and tumor retargeting, we developed sCARfMFE, a trimerized sCARhMFE adapter. Trimerization greatly improves both untargeting of CAR-dependent Ad infection and CEA-dependent virus retargeting in culture and in vivo. Combining sCARfMFE bispecific adapter transductional liver untargeting and transductional tumor retargeting with COX-2 transcriptional tumor-restricted transgene expression increases systemically administered Ad therapeutic efficacy for hepatic CRC tumors, using herpes virus type 1 thymidine kinase (HSV1-tk) as a therapeutic gene in conjunction with the prodrug ganciclovir (GCV). Both transductional untargeting and COX-2 transcriptional restriction also reduce HSV1-tk/GCV hepatic toxicity. In addition, transductional sCARfMFE untargeting reduces the innate immune response to systemic Ad administration. Combined transductional liver Ad untargeting, transductional tumor retargeting, and transcriptional transgene restriction suggests a means to engineer practical, effective therapeutic agents for hepatic CRC metastases in particular, as well as hepatic metastases of other epithelial cancers.


Assuntos
Neoplasias Colorretais/terapia , Terapia Genética/métodos , Neoplasias Hepáticas/terapia , Adenoviridae/genética , Animais , Antígeno Carcinoembrionário/biossíntese , Antígeno Carcinoembrionário/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Ciclo-Oxigenase 2/genética , Vetores Genéticos/genética , Humanos , Fragmentos de Imunoglobulinas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Nus , Regiões Promotoras Genéticas , Receptores Virais/genética , Proteínas Recombinantes de Fusão/genética , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biomed Microdevices ; 9(3): 301-5, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17195108

RESUMO

Developing biochemical and cell biological assay for screening biomolecules, evaluating their characteristics in biological processes, and determining their pharmacological effects represents a key technology in biomedical research. A PDMS-based integrated microfluidic platform was fabricated and tested for facilitating the labeling of ligand on the nanogram scale and sequential cell binding analysis in a manner that saves both time and reagents. Within this microfluidic platform, ligand labeling, cell immobolization, and optical analysis are performed in a miniaturized, continuous and semi-automated manner. This microfluidic device for ligand labeling and cell analysis is composed of two functional modules: (i) a circular reaction loop for fluorophore-labeling of the ligand and (ii) four parallel-oriented incubation chambers for immobilization of cells, binding of ligand to different cell populations, and optical evaluation of interactions between the labeled ligand and its cell targets. Epidermal growth factor (EGF) as the ligand and different cell lines with various levels of EGF receptor expression have been utilized to test the feasiblity of this microfluidic platform. When compared to studies with traditional Petri dish handling of cells and tissues, or even microwell analyses, experiments with the microfluidic platform described here are much less time consuming, conserve reagents, and are programmable, which makes these platforms a very promising new tool for biological studies.


Assuntos
Técnicas de Cultura de Células/instrumentação , Membrana Celular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Citometria de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Mapeamento de Interação de Proteínas/métodos , Animais , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Citometria de Fluxo/métodos , Análise de Injeção de Fluxo/instrumentação , Análise de Injeção de Fluxo/métodos , Ligantes , Camundongos , Técnicas Analíticas Microfluídicas/métodos , Células NIH 3T3 , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA