Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Small ; : e2403778, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948957

RESUMO

Bismuth-based catalysts are effective in converting carbon dioxide into formate via electrocatalysis. Precise control of the morphology, size, and facets of bismuth-based catalysts is crucial for achieving high selectivity and activity. In this work, an efficient, large-scale continuous production strategy is developed for achieving a porous nanospheres Bi2O3-FDCA material. First-principles simulations conducted in advance indicate that the Bi2O3 (111)/(200) facets help reduce the overpotential for formate production in electrocatalytic carbon dioxide reduction reaction (ECO2RR). Subsequently, using microfluidic technology and molecular control to precisely adjust the amount of 2, 5-furandicarboxylic acid, nanomaterials rich in (111)/(200) facets are successfully synthesized. Additionally, the morphology of the porous nanospheres significantly increases the adsorption capacity and active sites for carbon dioxide. These synergistic effects allow the porous Bi2O3-FDCA nanospheres to stably operate for 90 h in a flow cell at a current density of ≈250 mA cm- 2, with an average Faradaic efficiency for formate exceeding 90%. The approach of theoretically guided microfluidic technology for the large-scale synthesis of finely structured, efficient bismuth-based materials for ECO2RR may provide valuable references for the chemical engineering of intelligent nanocatalysts.

2.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015974

RESUMO

Blind image deblurring is a challenging problem in computer vision, aiming to restore the sharp image from blurred observation. Due to the incompatibility between the complex unknown degradation and the simple synthetic model, directly training a deep convolutional neural network (CNN) usually cannot sufficiently handle real-world blurry images. An existed generative adversarial network (GAN) can generate more detailed and realistic images, but the game between generator and discriminator is unbalancing, which leads to the training parameters not being able to converge to the ideal Nash equilibrium points. In this paper, we propose a GAN with a dual-branch discriminator using multiple sparse priors for image deblurring (DBSGAN) to overcome this limitation. By adding the multiple sparse priors into the other branch of the discriminator, the task of the discriminator is more complex. It can balance the game between the generator and the discriminator. Extensive experimental results on both synthetic and real-world blurry image datasets demonstrate the superior performance of our method over the state of the art in terms of quantitative metrics and visual quality. Especially for the GOPRO dataset, the averaged PSNR improves 1.7% over others.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
3.
Fish Shellfish Immunol ; 119: 173-181, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34610453

RESUMO

The apoptosis-inducing factor (AIF) is a phylogenetically old protein with classic function of inducing caspase-independent apoptosis, which extensively present in all primary kingdoms. In the present study, an AIF homologue (designated as CgAIF1) was identified from oyster Crassostrea gigas. The open reading frame of CgAIF1 cDNA was of 1836 bp encoding a peptide of 611 amino acid residues. There are a Pyr_redox_2 domain and an AIF_C domain in the predicted CgAIF1 protein. The deduced amino acid sequence of CgAIF1 shared 35.44%-79.22% similarity with AIF1s from other species. In the phylogenetic tree, CgAIF1 firstly clustered with mollusc AIF1s, and then with insect AIF1s, displaying separation from vertebrate AIF1s. The mRNA transcripts of CgAIF1 were constitutively distributed in all the tested oyster tissues, with the highest level in gills (12.98-fold of that in haemocytes, p < 0.05). After LPS and Poly (I:C) stimulation, the mRNA transcripts of CgAIF1 in gills were significantly increased at 6 h and 24 h (5.79-fold, p < 0.001, and 21.96-fold compared to the control group, p < 0.05), respectively. In immunocytochemical assay, the CgAIF1 positive signals were mainly distributed in the cytoplasm of haemocytes, while after Poly (I:C) stimulation, the increased CgAIF1 positive signals were observed in the nucleus. Moreover, in the HEK293T cells transfected with pcDNA3.1-CgAIF1 recombinant plasmid, green signal of CgAIF1 were observed in both the cytoplasm and nucleus. The cell mortality rate, cell shrinking and the phosphatidylserine (PS) ectropion (Annexin V+/PI- cells and Annexin V+/PI+ cells) of CgAIF1 transfected HEK293T cells were significantly increased, compared to the groups with or without pcDNA3.1 transfection. These results collectively suggested that CgAIF1 was a conserved AIF1 member in oysters, and participated in immune response by inducing cell apoptosis.


Assuntos
Crassostrea , Animais , Anexina A5 , Apoptose , Fator de Indução de Apoptose/genética , Crassostrea/genética , Regulação da Expressão Gênica , Células HEK293 , Hemócitos , Humanos , Imunidade Inata , Filogenia , Poli I-C , RNA Mensageiro/genética
4.
Nanomedicine ; 35: 102392, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872772

RESUMO

This paper reports a smart intracellular nanocarrier for sustainable and controlled drug release in non-invasive neuroregeneration. The nanocarrier is composed by superparamagnetic iron oxide-gold (SPIO-Au) core-shell nanoparticles (NPs) conjugated with porous coordination cages (PCCs) through the thiol-containing molecules as bridges. The negatively charged PCC-2 and positively charged PCC-3 are compared for intracellular targeting. Both types result in intracellular targeting via direct penetration across cellular membranes. However, the pyrene (Py)-PEG-SH bridge enabled functionalization of SPIO-Au NPs with PCC-3 exhibits higher interaction with PC-12 neuron-like cells, compared with the rhodamine B (RhB)-PEG-SH bridge enabled case and the stand-alone SPIO-Au NPs. With neglectable toxicities to PC-12 cells, the proposed SPIO-Au-RhB(Py)-PCC-2(3) nanocarriers exhibit effective drug loading capacity of retinoic acid (RA) at 13.505 µg/mg of RA/NPs within 24 h. A controlled release of RA is achieved by using a low-intensity 525 nm LED light (100% compared to 40% for control group within 96 h).


Assuntos
Portadores de Fármacos , Compostos Férricos , Ouro , Nanopartículas , Regeneração Nervosa/efeitos dos fármacos , Tretinoína , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacocinética , Compostos Férricos/farmacologia , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Células PC12 , Porosidade , Ratos , Tretinoína/química , Tretinoína/farmacocinética , Tretinoína/farmacologia
5.
J Am Chem Soc ; 142(10): 4732-4738, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32058715

RESUMO

The continuous variation of the lattice metric in metal-organic frameworks (MOFs) allows precise control over their chemical and physical properties. This has been realized herein by a series of mixed-linker and Zr6-cluster-based MOFs, namely, continuously variable MOFs (CVMOFs). Similar to the substitutional solid solutions, organic linkers with different lengths and various ratios were homogeneously incorporated into a framework rather than being allowed to form separate phases or domains, which was manifested by single-crystal X-ray diffraction, powder X-ray diffraction, fluorescence quenching experiments, and molecular simulations. The unit cell dimension, surface area, and pore size of CVMOFs were precisely controlled by adopting different linker sets and linker ratios. We demonstrate that CVMOFs allow the continuous and fine tailoring of cell-edge lengths from 17.83 to 32.63 Å, Brunauer-Emmett-Teller (BET) surface areas from 585 to 3791 m2g-1, and pore sizes up to 15.9 Å. Furthermore, this synthetic strategy can be applied to other MOF systems with various metal nodes thus allowing for a variety of CVMOFs with unprecedented tunability.

6.
J Am Chem Soc ; 142(35): 15020-15026, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786762

RESUMO

The pore engineering of microporous metal-organic frameworks (MOFs) has been extensively investigated in the past two decades, and an expansive library of functional groups has been introduced into various frameworks. However, the reliable procurement of MOFs possessing both a targeted pore size and preferred functionality together is less common. This is especially important since the applicability of many elaborately designed materials is often restricted by the small pore sizes of microporous frameworks. Herein, we designed and synthesized a mesoporous MOF based on Zr6 clusters and tetratopic carboxylate ligands, termed PCN-808. The accessible coordinatively unsaturated metal sites as well as the intrinsic flexibility of the framework make PCN-808 a prime scaffold for postsynthetic modification via linker installation. A linear ruthenium-based metalloligand was successfully and precisely installed into the walls of open channels in PCN-808 while maintaining the mesoporosity of the framework. The photocatalytic activity of the obtained material, PCN-808-BDBR, was examined in the aza-Henry reaction and demonstrated high conversion yields after six catalytic cycles. Furthermore, thanks to the mesoporous nature of the framework, PCN-808-BDBR also exhibits exceptional yields for the photocatalytic oxidation of dihydroartemisinic acid to artemisinin.

7.
Angew Chem Int Ed Engl ; 59(24): 9319-9323, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32174003

RESUMO

The controlled synthesis of multicomponent metal-organic frameworks (MOFs) allows for the precise placement of multiple cooperative functional groups within a framework, leading to emergent synergistic effects. Herein, we demonstrate that turn-on fluorescence sensors can be assembled by combining a fluorophore and a recognition moiety within a complex cavity of a multicomponent MOF. An anthracene-based fluorescent linker and a hemicyanine-containing CN- -responsive linker were sequentially installed into the lattice of PCN-700. The selective binding of CN- to hemicyanine inhibited the energy transfer between the two moieties, resulting in a fluorescence turn-on effect. Taking advantage of the high tunability of the MOF platform, the ratio between anthracene and the hemicyanine moiety could be fine-tuned in order to maximize the sensitivity of the overall framework. The optimized MOF-sensor had a CN- -detection limit of 0.05 µm, which is much lower than traditional CN- fluorescent sensors (about 0.2 µm).

8.
J Am Chem Soc ; 141(34): 13654-13663, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31398288

RESUMO

Postsynthetic metalation (PSM) has been employed as a robust method for the postsynthetic modification of metal-organic frameworks (MOFs). However, the lack of relevant information that can be obtained for the postsynthetically introduced metallic ions has hindered the development of PSM applications. Thanks to the advancement in single-crystal X-ray diffraction (SCXRD) technology, there have been a few recent examples in which successful postsynthetic introduction of single metal ions into MOFs occurred at the defined chelating sites. These works have provided useful explanations about the complicated host-guest chemistry involved in PSMs. On the other hand, there are only limited examples with crystallographic snapshots of the postsynthetic installation of metal clusters into the pores of MOFs using an ordinary SCXRD due to the loss of crystallinity of parent matrix during the PSM process. Herein, by the careful selection of starting materials and controlling the reaction conditions, we report the first crystallographic visualization of metal clusters inserted into Zr-based MOFs via PSM. The structural advantages of the parent Zr-MOF, which are inherited from the stable Zr6 cluster and triazole-containing dicarboxylate ligand, ensure both the preservation of high crystallinity and the presence of flexible coordination sites for PSM. Furthermore, PSM of metal clusters in a MOF pore space enhances stability of the final samples while also imparting the functionality of a successful catalyst toward ethylene dimerization reaction. The related construction ideas and structural information detailed in this work can help lay the foundation for further advancements using the postmodification of MOFs as well as open new doors for the utilization of SCXRD technology in the field of MOFs.

9.
J Am Chem Soc ; 141(7): 3129-3136, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30689379

RESUMO

The predictable topologies and designable structures of metal-organic frameworks (MOFs) are the most important advantages for this emerging crystalline material compared to traditional porous materials. However, pore-environment engineering in MOF materials is still a huge challenge when it comes to the growing requirements of expanded applications. A useful method for the regulation of pore-environments, linker installation, has been developed and applied to a series of microporous MOFs. Herein, employing PCN-700 and PCN-608 as platforms, ionic linker installation was successfully implemented in both microporous and mesoporous Zr-based MOFs to afford a series of ionic frameworks. Selective ionic dye capture results support the ionic nature of these MOFs. The mesopores in PCN-608 are able to survive after installation of the ionic linkers, which is useful for ion exchange and further catalysis. To illustrate this, Ru(bpy)32+, a commonly used photoactive cation, was encapsulated into the anionic mesoporous PCN-608-SBDC via ion exchange. Photocatalytic activity of Ru(bpy)3@PCN-608-SBDC was examined by aza-Henry reactions, which show good catalytic performance over three catalytic cycles.

10.
Appl Opt ; 58(14): 3877-3885, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31158206

RESUMO

Retinal vessel oxygen supply is important for retinal tissue metabolism. Commonly used retinal vessel oximetry devices are based on dual-wavelength spectral measurement of oxyhemoglobin and deoxyhemoglobin. However, there is no traceable standard for reliable calibration of these devices. In this study, we developed a fundus-simulating phantom that closely mimicked the optical properties of human fundus tissues. Microchannels of precisely controlled topological structures were produced by soft lithography to simulate the retinal vasculature. Optical properties of the phantom were adjusted by adding scattering and absorption agents to simulate different concentrations of fundus pigments. The developed phantom was used to calibrate the linear correlation between oxygen saturation (SO2) level and optical density ratio in a dual-wavelength oximetry device. The obtained calibration factors were used to calculate the retinal vessel SO2 in both eyes of five volunteers aged between 24 and 27 years old. The test results showed that the mean arterial and venous SO2 levels after phantom calibration were coincident with those after empirical value calibration, indicating the potential clinical utility of the produced phantom as a calibration standard.

11.
Angew Chem Int Ed Engl ; 58(36): 12425-12430, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265165

RESUMO

Modulation and templating are two synthetic techniques that have garnered significant attention over the last several years for the preparation of hierarchically porous metal-organic frameworks (HP-MOFs). In this study, by using fatty acids with different lengths and concentrations as dual-functional modulators/templates, we were able to obtain HP-MOFs with tunable mesopores that exhibit different pore diameters and locations. We found that the length and concentration of the fatty acids can determine if micelle formation occurs, which in turn dictates the porosity of the resulting HP-MOFs. The HP-MOFs with different mesopores differed in their performance in gas uptake and dye adsorption, and the structure-performance relationships were ascribed to the pore diameters and locations. This approach could provide a potentially universal method to efficiently introduce hierarchal mesopores into existing microporous MOF adsorbents with tunable properties.

12.
J Am Chem Soc ; 140(39): 12328-12332, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30227706

RESUMO

Multicomponent metal-organic frameworks (MOFs) promise the precise placement of synergistic functional groups with atomic-level precision, capable of promoting fascinating developments in basic sciences and applications. However, the complexity of multicomponent systems poses a challenge to their structural design and synthesis. Herein, we show that linkers of low symmetry can bring new opportunities to the construction of multicomponent MOFs. A carbazole-tetracarboxylate linker of  C s point group symmetry was designed and combined with an 8-connected Zr6 cluster to generate a low-symmetry MOF, PCN-609. PCN-609 contains coordinatively unsaturated Zr sites arranged within a lattice with three crystallographically distinct pockets, which can accommodate linear linkers of different lengths. Sequential linker installation was carried out to postsynthetically insert three linear linkers into PCN-609, giving rise to a quinary MOF. Functionalization of each linker from the quinary MOF system creates multivariate pore environments with unprecedented complexity.

13.
J Am Chem Soc ; 140(6): 2363-2372, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29345141

RESUMO

Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

14.
J Am Chem Soc ; 140(20): 6383-6390, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29719956

RESUMO

The predesignable porous structures in metal-organic frameworks (MOFs) render them quite attractive as a host-guest platform to address a variety of important issues at the frontiers of science. In this work, a perfluorophenylene functionalized metalloporphyrinic MOF, namely, PCN-624, has been rationally designed, synthesized, and structurally characterized. PCN-624 is constructed by 12-connected [Ni8(OH)4(H2O)2Pz12] (Pz = pyrazolide) nodes and fluorinated 5,10,15,20-tetrakis(2,3,5,6-tetrafluoro-4-(1 H-pyrazol-4-yl)phenyl)-porphyrin (TTFPPP) linker with an ftw-a topological net. Notably, PCN-624 exhibits extinguished robustness under different conditions, including organic solvents, strong acid, and base aqueous solutions. The pore surface of PCN-624 is decorated with pendant perfluorophenylene groups. These moieties fabricate densely fluorinated nanocages resulting in the selective guest capture of the material. More importantly, PCN-624 can be employed as an efficient heterogeneous catalyst for the selective synthesis of fullerene-anthracene bisadduct. Owing to the high chemical robustness of PCN-624, it can be recycled over five times without significant loss of its catalytic activity. All of these results demonstrate that MOFs can serve as a powerful platform with great flexibility for functional design to solve various synthetic problems.

15.
Chemistry ; 24(64): 16977-16982, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30203519

RESUMO

Metal-organic frameworks (MOFs) as methane adsorbents are highly promising materials for applications such as methane-powered vehicles, flare gas capture, and field natural gas separation. Pre- and post-synthetic modification of MOFs have been known to help improve both the overall methane uptake as well as the working capacity. Here, a post-synthetic modification strategy to non-covalently modify MOF adsorbents for the enhancement of the natural gas uptake for the MOF material is introduced. In this study, PCN-250 adsorbents were doped with C10 alkane and C14 fatty acid and their impact on the methane uptake capabilities was investigated. It was found that even trace amounts of heavy hydrocarbons could considerably enhance the raw methane uptake of the MOF while still being regenerable. The doped hydrocarbons are presumably located at the mesoporous defects of PCN-250, thus optimizing the framework-methane interactions. These findings reveal a general approach that can be used to modify the MOF absorbents, improving their ability to be sustainable and renewable natural gas adsorption platforms.

16.
Appl Opt ; 57(14): 3938-3946, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29791363

RESUMO

We propose a portable phantom system for calibration and validation of medical optical devices in a clinical setting. The phantom system comprises a perfusion module and an exchangeable tissue-simulating phantom that simulates tissue oxygenation and blood perfusion. The perfusion module consists of a peristaltic pump, two liquid storage units, and two pressure suppressors. The tissue-simulating phantom is fabricated by a three-dimensional (3D) printing process with microchannels embedded to simulate blood vessels. Optical scattering and absorption properties of biologic tissue are simulated by mixing graphite powder and titanium dioxide powder with clear photoreactive resin at specific ratios. Tissue oxygen saturation (StO2) and blood perfusion are simulated by circulating the mixture of blood and intralipid at different oxygenation levels and flow rates. A house-made multimodal imaging system that combines multispectral imaging and laser speckle imaging are used for non-invasive detection of phantom oxygenation and perfusion, and the measurements are compared with those of a commercial Moor device as well as numerical simulation. By acquiring multimodal imaging data from one phantom and applying the calibration factors in different settings, we demonstrate the technical feasibility to calibrate optical devices for consistent measurements. By simulating retina tissue vasculature and acquiring functional images at different tissue oxygenation and blood perfusion levels, we demonstrate the clinical potential to simulate tissue anomalies. Our experiments imply the clinical potential of a portable, low-cost, and traceable phantom standard to calibrate and validate medical optical devices for improved performance.


Assuntos
Sangue/metabolismo , Desenho de Equipamento , Oxigênio/metabolismo , Perfusão , Imagens de Fantasmas , Simulação por Computador , Humanos , Dispositivos Ópticos , Imagem Óptica , Reprodutibilidade dos Testes , Soluções
17.
Appl Opt ; 57(23): 6772-6780, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30129625

RESUMO

Vast research has been carried out to fabricate tissue-mimicking phantoms, due to their convenient use and ease of storage, to assess and validate the performance of optical imaging devices. However, to the best of our knowledge, there has been little research on the use of multilayer tissue phantoms for optical imaging technology, although their structure is closer to that of real skin tissue. In this work, we design, fabricate, and characterize multilayer tissue-mimicking phantoms, with a morphological mouse ear blood vessel, that contain an epidermis, a dermis, and a hypodermis. Each tissue-mimicking phantom layer is characterized individually to match specific skin tissue layer characteristics. The thickness, optical properties (absorption coefficient and reduced scattering coefficient), oxygenation, and perfusion of skin are the most critical parameters for disease diagnosis and for some medical equipment. These phantoms can be used as calibration artifacts and help to evaluate optical imaging technologies.


Assuntos
Orelha/irrigação sanguínea , Imagem Óptica/métodos , Oxigênio/sangue , Imagens de Fantasmas , Fenômenos Fisiológicos da Pele , Animais , Biomimética , Camundongos , Dispositivos Ópticos
18.
Chem Soc Rev ; 46(11): 3386-3401, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28451673

RESUMO

The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.


Assuntos
Enzimas/química , Estruturas Metalorgânicas/química , Enzimas/metabolismo , Estruturas Metalorgânicas/metabolismo , Propriedades de Superfície
19.
Angew Chem Int Ed Engl ; 57(20): 5725-5730, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29536600

RESUMO

Prodrug activation, by exogenously administered enzymes, for cancer therapy is an approach to achieve better selectivity and less systemic toxicity than conventional chemotherapy. However, the short half-lives of the activating enzymes in the bloodstream has limited its success. Demonstrated here is that a tyrosinase-MOF nanoreactor activates the prodrug paracetamol in cancer cells in a long-lasting manner. By generating reactive oxygen species (ROS) and depleting glutathione (GSH), the product of the enzymatic conversion of paracetamol is toxic to drug-resistant cancer cells. Tyrosinase-MOF nanoreactors cause significant cell death in the presence of paracetamol for up to three days after being internalized by cells, while free enzymes totally lose activity in a few hours. Thus, enzyme-MOF nanocomposites are envisioned to be novel persistent platforms for various biomedical applications.


Assuntos
Acetaminofen/farmacologia , Antineoplásicos/farmacologia , Estruturas Metalorgânicas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Nanopartículas/metabolismo , Acetaminofen/química , Acetaminofen/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estruturas Metalorgânicas/química , Modelos Moleculares , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Nanopartículas/química , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície
20.
Angew Chem Int Ed Engl ; 57(19): 5283-5287, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29431893

RESUMO

Earth-abundant first-row transition-metal nanoclusters (NCs) have been extensively investigated as catalysts. However, their catalytic activity is relatively low compared with noble metal NCs. Enhanced catalytic activity of cobalt NCs can be achieved by encapsulating Co NCs in soluble porous coordination cages (PCCs). Two cages, PCC-2a and 2b, possess almost identical cavity in shape and size, while PCC-2a has five times more net charges than PCC-2b. Co2+ cations were accumulated in PCC-2a and reduced to ultra-small Co NCs in situ, while for PCC-2b, only bulky Co particles were formed. As a result, Co NCs@PCC-2a accomplished the highest catalytic activity in the hydrolysis of ammonium borane among all the first-row transition-metals NCs. Based on these results, it is envisioned that confining in the charged porous coordination cage could be a novel route for the synthesis of ultra-small NCs with extraordinary properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA