Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38996528

RESUMO

In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.

2.
Cell ; 182(1): 1-4, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649872

RESUMO

Undergraduate researchers are the next-generation scientists. Here, we call for more attention from our community to the proper training of undergraduates in biomedical research laboratories. By dissecting common pitfalls, we suggest how to better mentor undergraduates and prepare them for flourishing careers.


Assuntos
Pesquisa Biomédica/educação , Pesquisadores , Comunicação , Tutoria , Mentores
3.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31955847

RESUMO

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Assuntos
Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteômica/métodos , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/metabolismo , Neurogênese/fisiologia , Nervo Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Receptores de Lipoproteínas/metabolismo , Olfato/fisiologia
4.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36996809

RESUMO

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Assuntos
COVID-19 , Vacinas , Humanos , Linfócitos T CD8-Positivos , Vacina BNT162 , SARS-CoV-2 , Vacinação , Anticorpos Antivirais
5.
Cell ; 171(5): 1206-1220.e22, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149607

RESUMO

The definition of neuronal type and how it relates to the transcriptome are open questions. Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: different PN classes target dendrites to distinct olfactory glomeruli, while PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomes of most PN classes and unequivocally mapped transcriptomes to specific olfactory function for six classes. Transcriptomes of closely related PN classes exhibit the largest differences during circuit assembly but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Transcription factors and cell-surface molecules are the most differentially expressed genes between classes and are highly informative in encoding cell identity, enabling us to identify a new lineage-specific transcription factor that instructs PN dendrite targeting. These findings establish that neuronal transcriptomic identity corresponds with anatomical and physiological identity defined by connectivity and function.


Assuntos
Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Análise por Conglomerados , Dendritos/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Especificidade de Órgãos , Pupa/citologia , Pupa/metabolismo , Fatores de Transcrição/metabolismo
6.
Cell ; 162(6): 1391-403, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359990

RESUMO

How metazoan mechanotransduction channels sense mechanical stimuli is not well understood. The NOMPC channel in the transient receptor potential (TRP) family, a mechanotransduction channel for Drosophila touch sensation and hearing, contains 29 Ankyrin repeats (ARs) that associate with microtubules. These ARs have been postulated to act as a tether that conveys force to the channel. Here, we report that these N-terminal ARs form a cytoplasmic domain essential for NOMPC mechanogating in vitro, mechanosensitivity of touch receptor neurons in vivo, and touch-induced behaviors of Drosophila larvae. Duplicating the ARs elongates the filaments that tether NOMPC to microtubules in mechanosensory neurons. Moreover, microtubule association is required for NOMPC mechanogating. Importantly, transferring the NOMPC ARs to mechanoinsensitive voltage-gated potassium channels confers mechanosensitivity to the chimeric channels. These experiments strongly support a tether mechanism of mechanogating for the NOMPC channel, providing insights into the basis of mechanosensitivity of mechanotransduction channels.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mecanotransdução Celular , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Canal de Potássio Kv1.2/metabolismo , Larva/citologia , Larva/metabolismo , Microtúbulos/metabolismo , Estrutura Terciária de Proteína , Tato
7.
Plant Cell ; 35(8): 3035-3052, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37225403

RESUMO

Effective cellular signaling relies on precise spatial localization and dynamic interactions among proteins in specific subcellular compartments or niches, such as cell-to-cell contact sites and junctions. In plants, endogenous and pathogenic proteins gained the ability to target plasmodesmata, membrane-lined cytoplasmic connections, through evolution to regulate or exploit cellular signaling across cell wall boundaries. For example, the receptor-like membrane protein PLASMODESMATA-LOCATED PROTEIN 5 (PDLP5), a potent regulator of plasmodesmal permeability, generates feed-forward or feed-back signals important for plant immunity and root development. However, the molecular features that determine the plasmodesmal association of PDLP5 or other proteins remain largely unknown, and no protein motifs have been identified as plasmodesmal targeting signals. Here, we developed an approach combining custom-built machine-learning algorithms and targeted mutagenesis to examine PDLP5 in Arabidopsis thaliana and Nicotiana benthamiana. We report that PDLP5 and its closely related proteins carry unconventional targeting signals consisting of short stretches of amino acids. PDLP5 contains 2 divergent, tandemly arranged signals, either of which is sufficient for localization and biological function in regulating viral movement through plasmodesmata. Notably, plasmodesmal targeting signals exhibit little sequence conservation but are located similarly proximal to the membrane. These features appear to be a common theme in plasmodesmal targeting.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo
8.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547405

RESUMO

MOTIVATION: Protein sequence database search and multiple sequence alignment generation is a fundamental task in many bioinformatics analyses. As the data volume of sequences continues to grow rapidly, there is an increasing need for efficient and scalable multiple sequence query algorithms for super-large databases without expensive time and computational costs. RESULTS: We introduce Chorus, a novel protein sequence query system that leverages parallel model and heterogeneous computation architecture to enable users to query thousands of protein sequences concurrently against large protein databases on a desktop workstation. Chorus achieves over 100× speedup over BLASTP without sacrificing sensitivity. We demonstrate the utility of Chorus through a case study of analyzing a ∼1.5-TB large-scale metagenomic datasets for novel CRISPR-Cas protein discovery within 30 min. AVAILABILITY AND IMPLEMENTATION: Chorus is open-source and its code repository is available at https://github.com/Bio-Acc/Chorus.


Assuntos
Algoritmos , Software , Sequência de Aminoácidos , Proteínas , Bases de Dados de Proteínas
9.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791287

RESUMO

Residue contact maps provide a condensed two-dimensional representation of three-dimensional protein structures, serving as a foundational framework in structural modeling but also as an effective tool in their own right in identifying inter-helical binding sites and drawing insights about protein function. Treating contact maps primarily as an intermediate step for 3D structure prediction, contact prediction methods have limited themselves exclusively to sequential features. Now that AlphaFold2 predicts 3D structures with good accuracy in general, we examine (1) how well predicted 3D structures can be directly used for deciding residue contacts, and (2) whether features from 3D structures can be leveraged to further improve residue contact prediction. With a well-known benchmark dataset, we tested predicting inter-helical residue contact based on AlphaFold2's predicted structures, which gave an 83% average precision, already outperforming a sequential features-based state-of-the-art model. We then developed a procedure to extract features from atomic structure in the neighborhood of a residue pair, hypothesizing that these features will be useful in determining if the residue pair is in contact, provided the structure is decently accurate, such as predicted by AlphaFold2. Training on features generated from experimentally determined structures, we leveraged knowledge from known structures to significantly improve residue contact prediction, when testing using the same set of features but derived using AlphaFold2 structures. Our results demonstrate a remarkable improvement over AlphaFold2, achieving over 91.9% average precision for a held-out subset and over 89.5% average precision in cross-validation experiments.


Assuntos
Proteínas de Membrana , Modelos Moleculares , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Sítios de Ligação , Bases de Dados de Proteínas , Biologia Computacional/métodos
10.
Proc Natl Acad Sci U S A ; 116(32): 16068-16073, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341080

RESUMO

Our understanding of the mechanisms of neural circuit assembly is far from complete. Identification of wiring molecules with novel mechanisms of action will provide insights into how complex and heterogeneous neural circuits assemble during development. In the Drosophila olfactory system, 50 classes of olfactory receptor neurons (ORNs) make precise synaptic connections with 50 classes of partner projection neurons (PNs). Here, we performed an RNA interference screen for cell surface molecules and identified the leucine-rich repeat-containing transmembrane protein known as Fish-lips (Fili) as a novel wiring molecule in the assembly of the Drosophila olfactory circuit. Fili contributes to the precise axon and dendrite targeting of a small subset of ORN and PN classes, respectively. Cell-type-specific expression and genetic analyses suggest that Fili sends a transsynaptic repulsive signal to neurites of nonpartner classes that prevents their targeting to inappropriate glomeruli in the antennal lobe.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Axônios/metabolismo , Dendritos/metabolismo , Proteínas de Repetições Ricas em Leucina , Mutação/genética , Fenótipo , Proteínas/metabolismo
11.
BMC Bioinformatics ; 22(1): 162, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771095

RESUMO

BACKGROUND: Hidden Markov models (HMM) are a powerful tool for analyzing biological sequences in a wide variety of applications, from profiling functional protein families to identifying functional domains. The standard method used for HMM training is either by maximum likelihood using counting when sequences are labelled or by expectation maximization, such as the Baum-Welch algorithm, when sequences are unlabelled. However, increasingly there are situations where sequences are just partially labelled. In this paper, we designed a new training method based on the Baum-Welch algorithm to train HMMs for situations in which only partial labeling is available for certain biological problems. RESULTS: Compared with a similar method previously reported that is designed for the purpose of active learning in text mining, our method achieves significant improvements in model training, as demonstrated by higher accuracy when the trained models are tested for decoding with both synthetic data and real data. CONCLUSIONS: A novel training method is developed to improve the training of hidden Markov models by utilizing partial labelled data. The method will impact on detecting de novo motifs and signals in biological sequence data. In particular, the method will be deployed in active learning mode to the ongoing research in detecting plasmodesmata targeting signals and assess the performance with validations from wet-lab experiments.


Assuntos
Algoritmos , Proteínas , Biologia Computacional , Cadeias de Markov , Proteínas/genética
12.
Proc Natl Acad Sci U S A ; 114(29): 7505-7512, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28674010

RESUMO

The formation of complex but highly organized neural circuits requires interactions between neurons and glia. During the assembly of the Drosophila olfactory circuit, 50 olfactory receptor neuron (ORN) classes and 50 projection neuron (PN) classes form synaptic connections in 50 glomerular compartments in the antennal lobe, each of which represents a discrete olfactory information-processing channel. Each compartment is separated from the adjacent compartments by membranous processes from ensheathing glia. Here we show that Thisbe, an FGF released from olfactory neurons, particularly from local interneurons, instructs ensheathing glia to wrap each glomerulus. The Heartless FGF receptor acts cell-autonomously in ensheathing glia to regulate process extension so as to insulate each neuropil compartment. Overexpressing Thisbe in ORNs or PNs causes overwrapping of the glomeruli their axons or dendrites target. Failure to establish the FGF-dependent glia structure disrupts precise ORN axon targeting and discrete glomerular formation.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Neuroglia/fisiologia , Bulbo Olfatório/fisiologia , Transdução de Sinais , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Genótipo , Microscopia Confocal , Neurópilo/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia
13.
Proc Natl Acad Sci U S A ; 113(26): 7243-8, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298354

RESUMO

Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Locomoção/genética , Proteínas de Membrana/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Larva/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Neurônios/metabolismo
14.
Langmuir ; 34(23): 6653-6659, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29715430

RESUMO

Poly(acrylic acid) (PAA) was partially grafted with dopamine (PAA-dopa), and then layer-by-layer assembled with poly(vinylpyrrolidone) (PVPON) to prepare hydrogen-bonded (PVPON/PAA-dopa) n film. Polydopamine (PDA) was deposited on (PVPON/PAA-dopa) n film in the presence of oxidant, and hence the whole (PVPON/PAA-dopa) nPDA film was cross-linked. (PVPON/PAA-dopa) nPDA could be utilized as a platform to produce the free-standing Janus film because of the easy detaching process and various chemical reactivity of PDA layer. Ag nanoparticles were formed on (PVPON/PAA-dopa) nPDA film by electroless metallization. 1 H,1 H,2 H,2 H-Perfluorodecanethiol (PFDT) was used to further modify the film through Michael addition. After detaching from the substrate, (PVPON/PAA-dopa)20PDA/Ag/PFDT exhibits reversible swelling-shrinking behavior as the pH value changes. This free-standing film shows Janus character, one side is hydrophobic, whereas the other side is hydrophilic. In addition, the hydrophobic surface exhibits a surface-enhanced Raman scattering effect, whereas the hydrophilic side does not.


Assuntos
Resinas Acrílicas/química , Dopamina/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
15.
Nature ; 548(7667): 285-287, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792928
16.
J Neurosci ; 36(44): 11275-11282, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27807168

RESUMO

Mechanosensation, one of the fastest sensory modalities, mediates diverse behaviors including those pertinent for survival. It is important to understand how mechanical stimuli trigger defensive behaviors. Here, we report that Drosophila melanogaster adult flies exhibit a kicking response against invading parasitic mites over their wing margin with ultrafast speed and high spatial precision. Mechanical stimuli that mimic the mites' movement evoke a similar kicking behavior. Further, we identified a TRPV channel, Nanchung, and a specific Nanchung-expressing neuron under each recurved bristle that forms an array along the wing margin as being essential sensory components for this behavior. Our electrophysiological recordings demonstrated that the mechanosensitivity of recurved bristles requires Nanchung and Nanchung-expressing neurons. Together, our results reveal a novel neural mechanism for innate defensive behavior through mechanosensation. SIGNIFICANCE STATEMENT: We discovered a previously unknown function for recurved bristles on the Drosophila melanogaster wing. We found that when a mite (a parasitic pest for Drosophila) touches the wing margin, the fly initiates a swift and accurate kick to remove the mite. The fly head is dispensable for this behavior. Furthermore, we found that a TRPV channel, Nanchung, and a specific Nanchung-expressing neuron under each recurved bristle are essential for its mechanosensitivity and the kicking behavior. In addition, touching different regions of the wing margin elicits kicking directed precisely at the stimulated region. Our experiments suggest that recurved bristles allow the fly to sense the presence of objects by touch to initiate a defensive behavior (perhaps analogous to touch-evoked scratching; Akiyama et al., 2012).


Assuntos
Aprendizagem da Esquiva/fisiologia , Drosophila/fisiologia , Mecanotransdução Celular/fisiologia , Reflexo/fisiologia , Órgãos dos Sentidos/fisiologia , Asas de Animais/fisiologia , Animais , Mecanismos de Defesa , Proteínas de Drosophila/fisiologia , Extremidades/inervação , Extremidades/fisiologia , Mecanorreceptores/fisiologia , Estimulação Física/métodos , Células Receptoras Sensoriais/fisiologia , Tato/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Asas de Animais/inervação
17.
Res Sq ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961476

RESUMO

Background: Residue contacts maps offer a 2-d reduced representation of 3-d protein structures and constitute a structural constraint and scaffold in structural modeling. In addition, contact maps are also an effective tool in identifying interhelical binding sites and drawing insights about protein function. While most works predict contact maps using features derived from sequences, we believe information from known structures can be leveraged for a prediction improvement in unknown structures where decent approximate structures such as ones predicted by AlphaFold2 are available. Results: Alphafold2's predicted structures are found to be quite accurate at inter-helical residue contact prediction task, achieving 83% average precision. We adopt an unconventional approach, using features extracted from atomic structures in the neighborhood of a residue pair and use them to predicting residue contact. We trained on features derived from experimentally determined structures and predicted on features derived from AlphaFold2's predicted structures. Our results demonstrate a remarkable improvement over AlphaFold2 achieving over 91.9% average precision for held-out and over 89.5% average precision in cross validation experiments. Conclusion: Training on features generated from experimentally determined structures, we were able to leverage knowledge from known structures to significantly improve the contacts predicted using AlphaFold2 structures. We demonstrated that using coordinates directly (instead of the proposed features) does not lead to an improvement in contact prediction performance.

18.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 3001-3012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155404

RESUMO

Inter-helix contact prediction is to identify residue contact across different helices in α-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.


Assuntos
Biologia Computacional , Proteínas de Membrana , Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Algoritmos
19.
Neuron ; 110(23): 3882-3896.e9, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36220098

RESUMO

Cell-surface proteins (CSPs) mediate intercellular communication throughout the lives of multicellular organisms. However, there are no generalizable methods for quantitative CSP profiling in specific cell types in vertebrate tissues. Here, we present in situ cell-surface proteome extraction by extracellular labeling (iPEEL), a proximity labeling method in mice that enables spatiotemporally precise labeling of cell-surface proteomes in a cell-type-specific environment in native tissues for discovery proteomics. Applying iPEEL to developing and mature cerebellar Purkinje cells revealed differential enrichment in CSPs with post-translational protein processing and synaptic functions in the developing and mature cell-surface proteomes, respectively. A proteome-instructed in vivo loss-of-function screen identified a critical, multifaceted role for Armh4 in Purkinje cell dendrite morphogenesis. Armh4 overexpression also disrupts dendrite morphogenesis; this effect requires its conserved cytoplasmic domain and is augmented by disrupting its endocytosis. Our results highlight the utility of CSP profiling in native mammalian tissues for identifying regulators of cell-surface signaling.


Assuntos
Mamíferos , Proteômica , Camundongos , Animais
20.
Neuron ; 110(14): 2299-2314.e8, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35613619

RESUMO

Transcription factors specify the fate and connectivity of developing neurons. We investigate how a lineage-specific transcription factor, Acj6, controls the precise dendrite targeting of Drosophila olfactory projection neurons (PNs) by regulating the expression of cell-surface proteins. Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains, and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion molecules and proteins previously not associated with wiring, such as Piezo, whose mechanosensitive ion channel activity is dispensable for its function in PN dendrite targeting. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combined expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, Acj6 controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


Assuntos
Proteínas de Drosophila , Neurônios Receptores Olfatórios , Animais , Dendritos/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Fatores do Domínio POU/metabolismo , Proteômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA