Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400498, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863125

RESUMO

Sodium-ion battery (SIB) is a candidate for the stationary energy storage systems because of the low cost and high abundance of sodium. However, the energy density and lifespan of SIBs suffer severely from the irreversible consumption of the Na-ions for the formation of the solid electrolyte interphase (SEI) layer and other side reactions on the electrodes. Here, Na3.5C6O6 is proposed as an air-stable high-efficiency sacrificial additive in the cathode to compensate for the lost sodium. It is characteristic of low desodiation (oxidation) potential (3.4-3.6 V vs. Na+/Na) and high irreversible desodiation capacity (theoretically 378 mAh g-1). The feasibility of using Na3.5C6O6 as a sodium compensation additive is verified with the improved electrochemical performances of a Na2/3Ni1/3Mn1/3Ti1/3O2ǀǀhard carbon cells and cells using other cathode materials. In addition, the structure of Na3.5C6O6 and its desodiation path are also clarified on the basis of comprehensive physical characterizations and the density functional theory (DFT) calculations. This additive decomposes completely to supply abundant Na ions during the initial charge without leaving any electrochemically inert species in the cathode. Its decomposition product C6O6 enters the carbonate electrolyte without bringing any detectable negative effects. These findings open a new avenue for elevating the energy density and/or prolonging the lifetime of the high-energy-density secondary batteries.

2.
Diabetes Obes Metab ; 25(12): 3788-3797, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37724698

RESUMO

AIM: This trial was designed to assess the efficacy and safety of cetagliptin added to metformin in Chinese patients with type 2 diabetes who had inadequate glycaemic control with metformin monotherapy. METHODS: In total, 446 patients with type 2 diabetes on metformin monotherapy were randomized to receive the addition of once-daily cetagliptin 100 mg, cetagliptin 50 mg and placebo in a 2:2:1 ratio for 24-week double-blind treatment. At week 24, patients initially randomized to cetagliptin 50 mg and placebo were switched to cetagliptin 100 mg for 28 weeks open-label treatment. The primary endpoint was the change in haemoglobin A1c (HbA1c) from baseline, and the efficacy analyses were based on an all-patients-treated population using an analysis of co-variance. RESULTS: After 24 weeks, both add-on therapies led to greater glycaemic control. Reductions in HbA1c from baseline were -1.17 ± 0.794%, -1.23 ± 0.896% in cetagliptin 100 mg and 50 mg plus metformin group, respectively. No difference was observed between the cetagliptin 100 mg and 50 mg plus metformin group. Patients with higher baseline HbA1c levels (≥8.5%) experienced greater reductions in HbA1c. A significantly greater proportion of patients achieved an HbA1c <7.0% with cetagliptin 100 mg (49.4%) and cetagliptin 50 mg (51.1%) plus metformin than metformin monotherapy (14.4%). Both combination therapies also improved the homeostasis model assessment ß-function index and decreased systolic blood pressure. There was no increased risk of adverse effects with combination therapy, and both combination therapies were generally well tolerated. CONCLUSIONS: The addition of cetagliptin once daily to metformin was more efficacious and well tolerated than metformin monotherapy in Chinese patients with type 2 diabetes who had inadequate glycaemic control with metformin monotherapy.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/efeitos adversos , Hipoglicemiantes/efeitos adversos , Hemoglobinas Glicadas , Resultado do Tratamento , Quimioterapia Combinada
3.
Fish Shellfish Immunol ; 135: 108643, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871630

RESUMO

Rainbow trout (Oncorhynchus mykiss), an important economic cold-water fish worldwide, is severely threatened by viruses and bacteria in the farming industry. The vibriosis outbreak has caused a significant setback to aquaculture. Vibrio anguillarum, one of the common disease-causing vibriosis associated with severe lethal vibriosis in aquaculture, infects fish mainly by adsorption and invasion of the skin, gills, lateral line and intestine. To investigate the defense mechanism of rainbow trout against the pathogen after infection with Vibrio anguillarum, trout were intraperitoneally injected by Vibrio anguillarum and divided into symptomatic group (SG) and asymptomatic group (AG) according to the phenotype. RNA-Seq technology was used to evaluate the transcriptional signatures of liver, gill and intestine of trout injected with Vibrio anguillarum (SG and AG) and corresponding control groups (CG(A) and CG(B)). The GO and KEGG enrichment analyses were used to investigate the mechanisms underlying the differences in susceptibility to Vibrio anguillarum. Results showed that in SG, immunomodulatory genes in the cytokine network were activated and tissue function-related genes were down-regulated, while apoptosis mechanisms were activated. However, AG responded to Vibrio anguillarum infection by activating complement related immune defenses, while metabolism and function related genes were up-regulated. Conclusively, a rapid and effective immune and inflammatory response can successfully defend Vibrio anguillarum infection. However, a sustained inflammatory response can lead to tissue and organ damage and cause death. Our results may provide a theoretical basis for breeding rainbow trout for disease resistance.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Vibrioses , Vibrio , Animais , Brânquias , Vibrio/fisiologia , Perfilação da Expressão Gênica/veterinária , Fígado , Intestinos
4.
Fish Shellfish Immunol ; 121: 1-11, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974153

RESUMO

Mitogen-activated protein kinase kinases (MKKs) are intermediate kinases of mitogen-activated protein kinases (MAPKs) signaling pathways. MKKs are activated by mitogen-activated protein kinase kinase kinase (MKKK) and then the activated MKKs trigger the activation of downstream MAPKs. MAPK signaling pathways play an important role in regulating immune functions including apoptosis and inflammation. However, studies on identification and characterization of mkk repertoire in rainbow trout (Oncorhynchus mykiss) are still limited. Trout experienced 4 rounds (4R) of whole genome duplication (WGD), thus exhibiting increased paralogs of mkks with potentially functional diversity. In this study, we identified 17 mkk genes in trout and the following bacterial challenge (Vibrio anguillarum) studies showed functional diversity of different mkk subtypes. Vibrio anguillarum infection resulted in significantly up-regulated mkk2 subtypes in spleen and liver, and mkk4b3 in spleen, suggesting immunomodulation was regulated by activation of ERK, p38 and JNK pathways. Compared to other mkk subtypes, mkk6s were down-regulated in symptomatic group, rather than asymptomatic group. The organisms present negative feedback on MAPK activation, thus reducing extra damage to cells. We observed down-regulated mkk6s with up-regulated genes (dusp1 & dusp2) involved in negative feedback of MAPK activation. Based on these results, we might propose the distinct expression patterns of genes associated with MAPK pathways resulted in different phenotypes and symptoms of trout in response to bacterial challenge.


Assuntos
Proteínas de Peixes , Quinases de Proteína Quinase Ativadas por Mitógeno , Oncorhynchus mykiss , Vibrioses , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Vibrio , Vibrioses/veterinária
5.
Gen Comp Endocrinol ; 316: 113947, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34848189

RESUMO

Glucocorticoid receptors (GRs) are ligand-activated transcription factors associated with anti-inflammation, stress, metabolism and gonadal development. In this study, two gr genes (gr1 and gr2) were cloned and analyzed from a viviparous teleost, black rockfish (Sebastes schlegelii). The phylogenetic analysis of GRs showed that GR1 and GR2 clustered into teleost GR1 and GR2 separately and differed from the GRs of tetrapods or basal ray-finned fishes. Black rockfish GRs possess four modular domains of the nuclear receptor superfamily: an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR) and a ligand-binding domain (LBD). Nine conserved amino acid inserts were found in the GR1 DBD, and the ligand cavity-related amino acids of GR1 and GR2 LBD were slightly different. Tissue distribution analysis revealed that grs was widely expressed in various tissues, while cyp11b was mainly expressed in the testis and head kidney. The cyp11b transcripts were localized in the interrenal glands of the head kidney, the main source of cortisol; grs transcripts were detected in oocytes, the follicle layer and the ovarian wall. Histologically, significant blood vessel dilation was observed in the fetal membrane during or after parturition of black rockfish. The highest levels of serum cortisol and ovarian cyp11b mRNA were detected in parturition. In addition, the relative expression level of gr1 was upregulated significantly after delivery, while the levels of gr2 showed no significant change. In addition, in vitro GC treatment inhibited the expression of il1b but significantly upregulated the transcription of il1r1. These data provide evidence that GRs are likely to work as anti-inflammatory factors by inhibiting the functions of pro-inflammatory factors in the parturition of black rockfish.


Assuntos
Perciformes , Receptores de Glucocorticoides , Animais , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Gônadas/metabolismo , Masculino , Perciformes/genética , Perciformes/metabolismo , Filogenia , Receptores de Glucocorticoides/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163263

RESUMO

Rainbow trout (Oncorhynchus mykiss) serves as one of the most important commercial fish with an annual production of around 800,000 tonnes. However, infectious diseases, such as furunculosis caused by Aeromonas salmonicida infection, results in great economic loss in trout culture. The brain and kidney are two important organs associated with "sickness behaviors" and immunomodulation in response to disease. Therefore, we worked with 60 trout and investigated transcriptional responses and enrichment pathways between healthy and infected trout. We observed that furunculosis resulted in the activation of toll-like receptors with neuroinflammation and neural dysfunction in the brain, which might cause the "sickness behaviors" of infected trout including anorexia and lethargy. We also showed the salmonid-specific whole genome duplication contributed to duplicated colony stimulating factor 1 (csf-1) paralogs, which play an important role in modulating brain immunomodulation. Enrichment analyses of kidneys showed up-regulated immunomodulation and down-regulated neural functions, suggesting an immune-neural interaction between the brain and kidney. Moreover, the kidney endocrine network was activated in response to A. salmonicida infection, further convincing the communications between endocrine and immune systems in regulating internal homeostasis. Our study provided a foundation for pathophysiological responses of the brain and kidney in response to furunculosis and potentially offered a reference for generating disease-resistant trout strains.


Assuntos
Aeromonas salmonicida/patogenicidade , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/microbiologia , Aeromonas salmonicida/genética , Aeromonas salmonicida/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Furunculose/genética , Furunculose/imunologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Infecções por Bactérias Gram-Negativas/imunologia , Rim/metabolismo , Rim/fisiologia , Oncorhynchus mykiss/metabolismo , Transcriptoma/genética
7.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955823

RESUMO

Smolting is an important development stage of salmonid, and an energy trade-off occurs between osmotic regulation and growth during smolting in rainbow trout (Oncorhynchus mykiss). Growth hormone releasing hormone, somatostatin, growth hormone and insulin-like growth factor (GHRH-SST-GH-IGF) axis exhibit pleiotropic effects in regulating growth and osmotic adaptation. Due to salmonid specific genome duplication, increased paralogs are identified in the ghrh-sst-gh-igf axis, however, their physiology in modulating osmoregulation has yet to be investigated. In this study, seven sst genes (sst1a, sst1b, sst2, sst3a, sst3b, sst5, sst6) were identified in trout. We further investigated the ghrh-sst-gh-igf axis of diploid and triploid trout in response to seawater challenge. Kidney sst (sst1b, sst2, sst5) and sstr (sstr1b1, sstr5a, sstr5b) expressions were changed (more than 2-fold increase (except for sstr5a with 1.99-fold increase) or less than 0.5-fold decrease) due to osmoregulation, suggesting a pleiotropic physiology of SSTs in modulating growth and smoltification. Triploid trout showed significantly down-regulated brain sstr1b1 and igfbp2a1 (p < 0.05), while diploid trout showed up-regulated brain igfbp1a1 (~2.61-fold, p = 0.057) and igfbp2a subtypes (~1.38-fold, p < 0.05), suggesting triploid trout exhibited a better acclimation to the seawater environment. The triploid trout showed up-regulated kidney igfbp5a subtypes (~6.62 and 7.25-fold, p = 0.099 and 0.078) and significantly down-regulated igfbp5b2 (~0.37-fold, p < 0.05), showing a conserved physiology of teleost IGFBP5a in regulating osmoregulation. The IGFBP6 subtypes are involved in energy and nutritional regulation. Distinctive igfbp6 subtypes patterns (p < 0.05) potentially indicated trout triggered energy redistribution in brain and kidney during osmoregulatory regulation. In conclusion, we showed that the GHRH-SST-GH-IGF axis exhibited pleiotropic effects in regulating growth and osmoregulatory regulation during trout smolting, which might provide new insights into seawater aquaculture of salmonid species.


Assuntos
Hormônio do Crescimento Humano , Oncorhynchus mykiss , Animais , Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento , Hormônio do Crescimento Humano/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Oncorhynchus mykiss/metabolismo , Osmorregulação , Somatostatina/metabolismo , Triploidia
8.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077203

RESUMO

Temperature strongly modulates muscle development and growth in ectothermic teleosts; however, the underlying mechanisms remain largely unknown. In this study, primary cultures of skeletal muscle cells of Lateolabrax maculatus were conducted and reared at different temperatures (21, 25, and 28 °C) in both the proliferation and differentiation stages. CCK-8, EdU, wound scratch and nuclear fusion index assays revealed that the proliferation, myogenic differentiation, and migration processes of skeletal muscle cells were significantly accelerated as the temperature raises. Based on the GO, GSEA, and WGCNA, higher temperature (28 °C) induced genes involved in HSF1 activation, DNA replication, and ECM organization processes at the proliferation stage, as well as HSF1 activation, calcium activity regulation, myogenic differentiation, and myoblast fusion, and sarcomere assembly processes at the differentiation stage. In contrast, lower temperature (21 °C) increased the expression levels of genes associated with DNA damage, DNA repair and apoptosis processes at the proliferation stage, and cytokine signaling and neutrophil degranulation processes at the differentiation stage. Additionally, we screened several hub genes regulating myogenesis processes. Our results could facilitate the understanding of the regulatory mechanism of temperature on fish skeletal muscle growth and further contribute to utilizing rational management strategies and promoting organism growth and development.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Animais , Diferenciação Celular/genética , Proliferação de Células/fisiologia , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Temperatura
9.
Gen Comp Endocrinol ; 302: 113689, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301756

RESUMO

Mitochondrial cytochrome P450 side-chain cleavage (P450scc), encoded by the cyp11a1 gene, initiates the first step of steroid biosynthesis. In this study, a 1554-bp open reading frame (ORF) of black rockfish (Sebastes schlegelii) cyp11a1 was cloned. The cyp11a1 gene is located on chromosome 5 and has 9 exons. The ORF encodes a putative precursor protein of 517 amino acids, and the predicted cleavable mitochondrial targeting peptide is located at amino acids 1-39. P450scc shares homology with other teleosts and tetrapods, which have relatively conserved binding regions with heme, cholesterol and adrenodoxin. Tissue distribution analysis revealed that the highest expression levels of cyp11a1 were detected in mature gonads and head kidney but that low levels were detected in gestational/regressed ovaries, regressed testes and other tissues. Immunostaining of P450scc was observed in testicular Leydig cells, ovarian theca cells, interrenal glands of head kidney, pituitary and multiple regions of brain. Particularly, two kinds of fish-specific P450scc-positive cells, including coronet cells of brain saccus vasculosus and hypophyseal somatolactin cells, were identified in black rockfish. Our results provide novel evidence for the potential role played by P450scc in reproduction behavior by mediating steroidogenesis in viviparous teleost.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Perciformes , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Feminino , Peixes/genética , Gônadas , Masculino , Perciformes/genética , Desenvolvimento Sexual
10.
Fish Shellfish Immunol ; 106: 887-897, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32866610

RESUMO

An energy trade-off is existed between immunological competence and growth. The axis of growth hormone releasing hormone, somatostatin, growth hormone, insulin-like growth factor (GHRH-SST-GH-IGF axis) regulates growth performances and immune competences in rainbow trout (Oncorhynchus mykiss). The salmonid-specific whole genome duplication event is known to result in duplicated copies of several key genes in GHRH-SST-GH-IGF axis. In this study, we evaluated the physiological functions of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity. Based on principal components analysis (PCA), we observed the overall expression profiles of GHRH-SST-GH-IGF axis were significantly altered by Vibrio anguillarum infection. Trout challenged with Vibrio anguillarum showed down-regulated igf1s subtypes and up-regulated igfbp1a1. The brain sst genes (sst1a, sst1b, sst3b and sst5) and igfpbs genes (igfbp4s and igfbp5b2) were significantly affected by V. anguillarum infection, while the igfbp4s, igfbp5s, igfbp6s and igf2bps genes showed significant changes in peripheral immune tissues in response to V. anguillarum infection. Gene enrichment analyses showed functional and signaling pathways associated with apoptosis (such as p53, HIF-1 or FoxO signaling) were activated. We further proposed a possible model that describes the IGF and IGFBPs-regulated interaction between cell growth and programmed death. Our study provided new insights into the physiological functions and potentially regulatory mechanisms of the GHRH-SST-GH-IGF axis, indicating the pleiotropic effects of GHRH-SST-GH-IGF axis in regulating crosstalk between growth and immunity in trout.


Assuntos
Doenças dos Peixes/imunologia , Hormônio Liberador de Hormônio do Crescimento/imunologia , Hormônio do Crescimento/imunologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/imunologia , Somatostatina/imunologia , Vibrioses/imunologia , Vibrio , Animais , Encéfalo/imunologia , Doenças dos Peixes/genética , Oncorhynchus mykiss/microbiologia , Transdução de Sinais , Somatomedinas/genética , Somatomedinas/imunologia , Somatostatina/genética , Vibrioses/genética , Vibrioses/veterinária
11.
Sensors (Basel) ; 20(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327523

RESUMO

Multi-resolution feature fusion DCF (Discriminative Correlation Filter) methods have significantly advanced the object tracking performance. However, careless choice and fusion of sample features make the algorithm susceptible to interference, leading to tracking failure. Some trackers embed the re-detection module to remedy tracking failures, yet distinguishing ability and stability of the sample features are scarcely considered when training the detector, resulting in low effectiveness detection. Firstly, this paper proposes a criterion of feature tracking reliability and conduct a novel feature adaptive fusion framework. The feature tracking reliability criterion is proposed to evaluate the robustness and distinguishing ability of the sample features. Secondly, a re-detection module is proposed to further avoid tracking failures and increase the accuracy of target re-detection. The re-detection module consists of multiple SVM detectors trained by different sample features. When the tracking fails, the SVM detector trained by the most reliable sample feature will be activated to recover the target and adjust the target position. Finally, comparison experiments on OTB2015 and UAV123 databases demonstrate the accuracy and robustness of the proposed method.

12.
Fish Shellfish Immunol ; 95: 180-189, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600595

RESUMO

Low levels of stresses cause eustress while high stressful situations result in distress. Female rainbow trout (Oncorhynchus mykiss) was reared under crowded conditions to mimic the stressful environment of intensive fishery production. Trout was stocked for 300 days with initial densities of 4.6 ±â€¯0.02 (final: 31.1 ±â€¯0.62), 6.6 ±â€¯0.03 (final: 40.6 ±â€¯0.77), and 8.6 ±â€¯0.04 (final: 49.3 ±â€¯1.09) kg/m3 as SD1, SD2 and SD3. We assessed molecular, cellular and organismal parameters to understand the flexibility of neuro-endocrine-immune network during stress. Trout with higher initial density (SD3) displayed the slightly activated hypothalamus-pituitary-interrenal (HPI) axis with positively increased antioxidant enzyme activities and anti-inflammatory cytokine transcriptions on day 60 or 120. These results indicated that low level of stress was capable of exerting eustress by activating neuro-endocrine-immune network with beneficial adaptation. Transition from eustress to distress was induced by the increased intensity and duration of crowding stress on day 240 and 300. The prolonged activation of HPI axis resulted in suppressed growth hormone-insulin-like growth factor (GH-IGF) axis, up-regulated cytokine transcriptions and severe reactive oxygen species stress. Stress means reset of neuro-endocrine-immune network with energy expenditure and redistribution. Digestive ability of trout with distress was also inhibited on day 240 and 300, indicating a decreased total energy supplement and energy distribution for functions are not necessary for surviving such as growth and reproduction. Consequently, we observed the dyshomeostasis of energy balance and neuro-endocrine-immune network of trout during long-term crowding conditions.


Assuntos
Aglomeração , Glândulas Endócrinas/imunologia , Oncorhynchus mykiss/imunologia , Estresse Fisiológico/imunologia , Animais , Citocinas/imunologia , Feminino , Hipotálamo/imunologia , Hipófise/imunologia , Fatores de Tempo
13.
Fish Shellfish Immunol ; 92: 782-791, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31288100

RESUMO

Toll-like receptor (TLR) genes are the earliest reported pathogen recognition receptors (PRRs) and have been extensively studied. These genes play pivotal roles in the innate immune defense against pathogen invasion. In this study, a total of 16 tlr genes were identified and characterized in spotted sea bass (Lateolabrax maculatus). The tlr genes of spotted sea bass were classified into five subfamilies (tlr1-subfamily, tlr3-subfamily, tlr5-subfamily, tlr7-subfamily, and tlr11-subfamily) according to the phylogenetic analysis, and their annotations were confirmed by a syntenic analysis. The protein domain analysis indicated that most tlr genes had the following three major TLR protein domains: a leucine-rich repeat (LRR) domain, a transmembrane region (TM) and a Toll/interleukin-1 receptor (TIR) domain. The tlr genes in spotted sea bass were distributed in 11 of 24 chromosomes. The mRNA expression levels of 16 tlr genes in response to Vibrio harveyi infection were quantified in the head kidney. Most genes were downregulated following V. harveyi infection, while only 5 tlr genes, including tlr1-1, tlr1-2, tlr2-2, tlr5, and tlr7, were significantly upregulated. Collectively, these results help elucidate the crucial roles of tlr genes in the immune response of spotted sea bass and may supply valuable genomic resources for future studies investigating fish disease management.


Assuntos
Bass/genética , Bass/imunologia , Doenças dos Peixes/imunologia , Genoma/imunologia , Imunidade Inata/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
14.
Fish Shellfish Immunol ; 92: 111-118, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176005

RESUMO

Apolipoproteins (Apos), which are the protein components of plasma lipoproteins, play important roles in lipid transport in vertebrates. It has been demonstrated that in teleosts, several Apos display antimicrobial activity and play crucial roles in innate immunity. Despite their importance, apo genes have not been systematically characterized in many aquaculture fish species. In our study, a complete set of 23 apo genes was identified and annotated from spotted sea bass (Lateolabrax maculatus). Phylogenetic and homology analyses provided evidence for their annotation and evolutionary relationships. To investigate their potential roles in the immune response, the expression patterns of 23 apo genes were determined in the liver and intestine by qRT-PCR after Vibrio harveyi infection. After infection, a total of 20 differentially expressed apo genes were observed, and their expression profiles varied among the genes and tissues. 5 apo genes (apoA1, apoA4a.1, apoC2, apoF and apoO) were dramatically induced or suppressed (log2 fold change >4, P < 0.05), suggesting their involvement in the immune response of spotted sea bass. Our study provides a valuable foundation for future studies aimed at uncovering the specific roles of each apo gene during bacterial infection in spotted sea bass and other teleost species.


Assuntos
Apolipoproteínas/genética , Apolipoproteínas/imunologia , Bass/genética , Bass/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Animais , Apolipoproteínas/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Família Multigênica/imunologia , Filogenia , Transcriptoma , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
15.
Artigo em Inglês | MEDLINE | ID: mdl-31082484

RESUMO

The tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation (14-3-3) proteins are a group of highly conserved homologous and heterologous proteins involved in a wild range of physiological processes, including the regulation of many molecular phenomena under different environmental salinities. In this study, we identified eleven 14-3-3 genes from the spotted sea bass (Lateolabrax maculatus) genome and transcriptomic databases and verified their identities by conducting phylogenetic, syntenic and gene structure analyses. The spotted sea bass 14-3-3 genes are highly conserved based on sequence alignment, conserved domains and motifs, and tertiary structural feature. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14-3-3 genes in gill of spotted sea bass under normal physiological conditions indicated that the expression level of 14-3-3 zeta was the highest among tested genes, followed by 14-3-3 theta. Furthermore, expression profiles of 14-3-3 genes in gill tissue (in vivo and in vitro) indicated that the 14-3-3 zeta and 14-3-3 theta genes were significantly induced by different environmental salinities in spotted sea bass, suggesting their potential involvement in response to salinity challenge. Our findings may lay the foundation for future functional studies on the 14-3-3 gene family in euryhaline teleosts.


Assuntos
Proteínas 14-3-3/genética , Bass/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Proteínas 14-3-3/classificação , Animais , Bass/fisiologia , Genoma , Brânquias/metabolismo , Família Multigênica/genética , Filogenia , Salinidade
16.
BMC Genomics ; 19(1): 464, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914359

RESUMO

BACKGROUND: Salinity is an important abiotic stress that influences the physiological and metabolic activity, reproduction, growth and development of marine fish. It has been suggested that half-smooth tongue sole (Cynoglossus semilaevis), a euryhaline fish species, uses a large amount of energy to maintain osmotic pressure balance when exposed to fluctuations in salinity. To delineate the molecular response of C. semilaevis to different levels of salinity, we performed RNA-seq analysis of the liver to identify the genes and molecular and biological processes involved in responding to salinity changes. RESULTS: The present study yielded 330.4 million clean reads, of which 83.9% were successfully mapped to the reference genome of C. semilaevis. One hundred twenty-eight differentially expressed genes (DEGs), including 43 up-regulated genes and 85 down-regulated genes, were identified. These DEGs were highly represented in metabolic pathways, steroid biosynthesis, terpenoid backbone biosynthesis, butanoate metabolism, glycerolipid metabolism and the 2-oxocarboxylic acid metabolism pathway. In addition, genes involved in metabolism, osmoregulation and ion transport, signal transduction, immune response and stress response, and cytoskeleton remodeling were affected during acclimation to low salinity. Genes acat2, fdps, hmgcr, hmgcs1, mvk, pmvk, ebp, lss, dhcr7, and dhcr24 were up-regulated and abat, ddc, acy1 were down-regulated in metabolic pathways. Genes aqp10 and slc6a6 were down-regulated in osmoregulation and ion transport. Genes abat, fdps, hmgcs1, mvk, pmvk and dhcr7 were first reported to be associated with salinity adaptation in teleosts. CONCLUSIONS: Our results revealed that metabolic pathways, especially lipid metabolism were important for salinity adaptation. The candidate genes identified from this study provide a basis for further studies to investigate the molecular mechanism of salinity adaptation and transcriptional plasticity in marine fish.


Assuntos
Proteínas de Peixes/genética , Linguados/genética , Regulação da Expressão Gênica , Fígado/metabolismo , Transcriptoma , Aclimatação , Animais , Linguados/fisiologia , Perfilação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Salinidade , Análise de Sequência de RNA
17.
Gen Comp Endocrinol ; 259: 1-11, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017850

RESUMO

To study the expression of four estrogen receptor genes (erα1, erα2, erß1, erß2) of female rainbow trout (Oncorhynchus mykiss) during first ovarian development, trouts were sampled from different ovarian stages. Serum E2 (estradiol) was measured by ELISA and estrogen receptors mRNA expression were examined by qRT-PCR. Our results showed a close association between increased erα1 and vitellogenin mRNA expression during ovarian maturation and increased erα2 mRNA expression in mature ovarian stages. Correlation analysis revealed that a negative relationship between serum E2 and ovarian erß1 (or hepatic erß2), but ovarian erß2 mRNA expression was relatively unchanged during first ovarian development. Trout were also reared in different densities as stocking density 1, 2 and 3 (SD1, 4.6-31.1 kg/m3; SD2, 6.6-40.6 kg/m3; SD3, 8.6-49.3 kg/m3) to elucidate effects of high density on estrogen receptor expression. Histology observation showed ovarian development of trout in higher densities were retard with a relatively early stage and fewer vitellogenin accumulation. Trout in high densities showed significantly decreased serum E2, erα mRNA expression and increasing trends of erß mRNA expression. A noticeable increase of ovarian erß2 mRNA expression was seen in trout when density is approaching to 50 kg/m3. In conclusion, we may hypothesize that increased erß mRNA expression triggered by high density result in decreased erα mRNA expression and vitellogenesis. As a result, ovarian development in higher densities was retard.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oncorhynchus mykiss/metabolismo , Ovário/embriologia , Receptores de Estrogênio/genética , Animais , Estradiol/sangue , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Fígado/metabolismo , Oncorhynchus mykiss/sangue , Oncorhynchus mykiss/genética , Ovário/citologia , Ovário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Análise de Regressão , Vitelogênese/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo
18.
Fish Physiol Biochem ; 43(6): 1707-1720, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28918476

RESUMO

To investigate the correlation between lipid deposition variation and stocking density in Amur sturgeon (Acipenser schrenckii) and the possible physiological mechanism, fish were conducted in different stocking densities (LSD 5.5 kg/m3, MSD 8.0 kg/m3, and HSD 11.0 kg/m3) for 70 days and then the growth index, lipid content, lipase activities, and the mRNA expressions of lipid-related genes were examined. Results showed that fish subjected to higher stocking density presented lower final body weights (FBW), specific growth ratio (SGR), and gonad adipose tissue index (GAI) (P < 0.05). Lower lipid content was observed in the liver, gonad adipose tissue and muscle in sturgeons held in HSD group (P < 0.05). The serum concentrations of triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) decreased significantly with increasing stocking density, while no significant change was observed for low-density lipoprotein cholesterol (LDL-C). Furthermore, the cDNAs encoding lipoprotein lipase (LPL) and hepatic lipase (HL) were isolated in Amur sturgeon, respectively. The full-length LPL cDNA was composed of 1757 bp with an open reading frame of 501 amino acids, while the complete nucleotide sequences of HL covered 1747 bp encoding 499 amino acids. In the liver, the activities and mRNA levels of LPL were markedly lower in HSD group, which were consistent with the variation tendency of HL. Fish reared in HSD group also presented lower levels of activities and mRNA expression of LPL in the muscle and gonad. Moreover, the expressions of peroxisome proliferator-activated receptor α (PPARα) in both the liver and skeletal muscle were significantly upregulated in HSD group. Overall, the results indicated that high stocking density negatively affects growth performance and lipid deposition of Amur sturgeon to a certain extent. The downregulation of LPL and HL and the upregulation of PPARα may be responsible for the lower lipid distribution of Amur sturgeon in higher stocking density.


Assuntos
Criação de Animais Domésticos , Peixes/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Metabolismo dos Lipídeos , Sequência de Aminoácidos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Peixes/genética , Lipase/genética , Lipase/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Filogenia
19.
Fish Physiol Biochem ; 43(6): 1587-1602, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28730461

RESUMO

Animal growth depends on feedback regulation of hormone levels and environmental conditions. Insulin-like growth factor-1 (Igf1) promotes cell growth and differentiation and represses apoptosis and is highly regulated by the environment. Moreover, animals modify physiological homeostasis under stressful conditions through epigenetics and genetic regulatory mechanisms. Therefore, a comprehensive understanding of the effects of salt on fish growth is needed. In this study, half smooth tongue sole (Cynoglossus semilaevis) were subjected to 15‰ salinity for 0, 7, and 60 days (D) to assess the effects of low salinity on liver cellularity and growth. The results show that low salinity changed liver morphology, suggesting an increase in energy expenditure to recover from the osmotic disruption. igf1 was upregulated in female fish under 15‰ salinity after 7D and may participate in molecular repair. igf1 was downregulated after 60D of salt stress, resulting in retarded growth. Methylation levels were opposite to those of gene expression, suggesting inhibited regulation. Furthermore, three exons in the igf1 gene had significantly different methylation levels in fish under salt stress. Notably, more putative transcription factor binding sites were located in CpG sites at higher methylation levels. igf1 is not a sex-related gene, as no difference in methylation level was detected between males and females in the control group. These results clarify liver damage and changes in DNA methylation and mRNA expression of igf1, providing insight into the adverse effects of low salt on growth of C. semilaevis and the epigenetics and regulatory mechanisms involved in stressful conditions.


Assuntos
Linguados/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , RNA Mensageiro/metabolismo , Salinidade , Animais , Metilação de DNA , Feminino , Fator de Crescimento Insulin-Like I/genética , Masculino , RNA Mensageiro/genética
20.
Gen Comp Endocrinol ; 236: 131-138, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27401261

RESUMO

The objective of this study was to determine the hypothalamus-pituitary-gonad (HPG) axis of female rainbow trout (Oncorhynchus mykiss) during early ovarian development and under high rearing density. Trouts were sampled from 240 (ovarian stage II) to 540 (ovarian stage IV) days following hatching (DFH) as control group (Ctrl, 4.6-31.1kg/m(3)) to determine HPG axis during early ovarian development. Trouts from the same batch of fertilized eggs were reared in two higher densities during 240-540 DFH as stocking density 1 and 2 (SD1, 6.6-40.6kg/m(3); SD2, 8.6-49.3kg/m(3)) to elucidate effects of high density on reproductive parameters. Dopamine, E2 (estradiol), 17α,20ß-P (17α,20ß-dihydroxy4-pregnen-3-one) and P4 (progesterone) were evaluated by radioimmunoassay or ELISA. mRNA expression of hypothalamic gnrh-1, -2 (gonadotropin-releasing hormone-1, -2), pituitary gonadotropins (fsh/lh, follicle-stimulating hormone/luteinizing hormone) and their cognate receptors (fshr/lhr) in ovaries were examined by qRT-PCR. Our findings demonstrated mRNA expression of hypothalamic sgnrh-1, pituitary fsh and ovarian fshr increased in early ovarian development (360 DFH). Serum 17α,20ß-P and pituitary lh mRNA expression first increased when trouts were in ovarian stage III (420 DFH). Ovaries were at different stages when reared in different densities. Long-term high density treatment (over 31.7kg/m(3)) resulted in decreased hypothalamic sgnrh-1, pituitary fsh, ovarian fshr, serum E2, and increased hypothalamus gnrh-2 and serum dopamine during vitellogenin synthesis, suggesting HPG of rainbow trout might be retarded under dense rearing condition.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Gonadotropinas Hipofisárias/metabolismo , Hipotálamo/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Ovário/metabolismo , Animais , Feminino , Oncorhynchus mykiss/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA