Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 422, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684976

RESUMO

Brasenia schreberi, a plant species traditionally utilized in Chinese medicine and cuisine, represents an early evolutionary stage among flowering plants (angiosperms). While the plastid genome of this species has been published, its mitochondrial genome (mitogenome) has not been extensively explored, with a notable absence of thorough comparative analyses of its organellar genomes. In our study, we had assembled the entire mitogenome of B. schreberi utilizing the sequencing data derived from both Illumina platform and Oxford Nanopore. The B. schreberi mitogenome mostly exists as six circular DNA molecules, with the largest being 628,257 base pairs (bp) and the smallest 110,220 bp, amounting to 1.49 megabases (Mb). Then we annotated the mitogenome of B. schreberi. The mitogenome encompasses a total of 71 genes: 40 of these are coding proteins genes (PCGs), 28 are genes for transfer RNA (tRNA), and the remaining 3 are genes for ribosomal RNA (rRNA). In the analysis of codon usage, we noted a unique codon preference specific to each amino acid. The most commonly used codons exhibited an average RSCU of 1.36, indicating a noticeable bias in codon selection. In the repeat sequence analysis, a total of 553 simple sequence repeats (SSRs) were identified, 1,822 dispersed repeats (comprising 1,015 forward and 807 palindromic repeats), and 608 long terminal repeats (LTRs). Additionally, in the analysis of homologous sequences between organelle genomes, we detected 38 homologous sequences derived from the plastid genome, each exceeding 500 bp, within the B. schreberi mitochondrial genome. Notably, ten tRNA genes (trnC-GCA, trnM-CAU, trnI-CAU, trnQ-UUG, trnN-GUU, trnT-GGU, trnW-CCA, trnA-UGC, trnI-GAU, and trnV-GAC) appear to have been completely transferred from the chloroplast to the mitogenome. Utilizing the Deepred-mt to predict the RNA editing sites in the mitogenome, we have identified 675 high-quality RNA editing sites in the 40 mitochondrial PCGs. In the final stage of our study, we performed an analysis of colinearity and inferred the phylogenetic relationship of B. schreberi with other angiosperms, utilizing the mitochondrial PCGs as a basis. The results showed that the non-coding regions of the B. schreberi mitogenome are characterized by an abundance of repetitive sequences and exogenous sequences, and B. schreberi is more closely related with Euryale ferox.


Assuntos
Genoma Mitocondrial , RNA de Transferência/genética , Uso do Códon , Anotação de Sequência Molecular , Cromossomos de Plantas/genética , Genoma de Planta , Códon/genética , Filogenia , RNA Ribossômico/genética
2.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714914

RESUMO

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Fúngicas , Oryza , Proteômica , Oryza/microbiologia , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mutação , Multiômica , Ascomicetos
3.
Inflamm Res ; 73(3): 433-446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345634

RESUMO

BACKGROUND: B cells were believed to act as antigen-presenting cells (APCs) to promote T helper type 2 (Th2) cell responses. However, the role of lung B cells and its subpopulations in Th2 cell responses in asthma remains unclear. OBJECTIVE: We leveraged an anti-CD20 monoclonal antibody (mAb) treatment that has been shown to selectively deplete B cells in mice and investigated whether this treatment modulates Th2 cell responses and this modulation is related to lung follicular mature (FM) B cells in a murine model of asthma. METHODS AND RESULTS: We used a house dust mite (HDM)-induced asthma mouse model and found that anti-CD20 mAb treatment attenuates Th2 cell responses. Meanwhile, anti-CD20 mAb treatment did dramatically reduce the number of B cells, especially FM B cells in the lungs, but did not impact the frequency of other immune cell types, including lung T cells, dendritic cells, natural killer cells, and regulatory T cells in wild-type mice. Moreover, we found that the suppressive effect of anti-CD20 mAb treatment on Th2 cell responses could be reversed upon adoptive transfer of lung FM B cells, but not lung CD19+ B cells without FM B cells in asthmatic mice. CONCLUSIONS: These findings reveal that anti-CD20 mAb treatment alleviates Th2 cell responses, possibly by depleting lung FM B cells in a Th2-driven asthma model. This implies a potential therapeutic approach for asthma treatment through the targeting of lung FM B cells.


Assuntos
Asma , Células Th2 , Camundongos , Animais , Asma/tratamento farmacológico , Pulmão , Linfócitos B , Pyroglyphidae , Células Dendríticas , Modelos Animais de Doenças
4.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33833053

RESUMO

Copy number variation (CNV) at the 16p11.2 locus is associated with neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. CNVs of the 16p gene can manifest in opposing head sizes. Carriers of 16p11.2 deletion tend to have macrocephaly (or brain enlargement), while those with 16p11.2 duplication frequently have microcephaly. Increases in both gray and white matter volume have been observed in brain imaging studies in 16p11.2 deletion carriers with macrocephaly. Here, we use human induced pluripotent stem cells (hiPSCs) derived from controls and subjects with 16p11.2 deletion and 16p11.2 duplication to understand the underlying mechanisms regulating brain overgrowth. To model both gray and white matter, we differentiated patient-derived iPSCs into neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). In both NPCs and OPCs, we show that CD47 (a "don't eat me" signal) is overexpressed in the 16p11.2 deletion carriers contributing to reduced phagocytosis both in vitro and in vivo. Furthermore, 16p11.2 deletion NPCs and OPCs up-regulate cell surface expression of calreticulin (a prophagocytic "eat me" signal) and its binding sites, indicating that these cells should be phagocytosed but fail to be eliminated due to elevations in CD47. Treatment of 16p11.2 deletion NPCs and OPCs with an anti-CD47 antibody to block CD47 restores phagocytosis to control levels. While the CD47 pathway is commonly implicated in cancer progression, we document a role for CD47 in psychiatric disorders associated with brain overgrowth.


Assuntos
Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Antígeno CD47/metabolismo , Transtornos Cromossômicos/metabolismo , Deficiência Intelectual/metabolismo , Adolescente , Adulto , Animais , Transtorno Autístico/patologia , Encéfalo/patologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Calreticulina/genética , Calreticulina/metabolismo , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 16/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Deficiência Intelectual/patologia , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo
5.
BMC Plant Biol ; 23(1): 487, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821817

RESUMO

BACKGROUND: Viburnum chinshanense is an endemic species found exclusively in the North-Central and South-Central regions of China. This species is a lush garden ornamental tree and is extensively utilized for vegetation restoration in rocky desertification areas. RESULTS: In this study, we obtained 13.96 Gb of Oxford Nanopore data for the whole genome, and subsequently, by combining Illumina short-reads, we successfully assembled the complete mitochondrial genome (mitogenome) of the V. chinshanense using a hybrid assembly strategy. The assembled genome can be described as a circular genome. The total length of the V. chinshanense mitogenome measures 643,971 bp, with a GC content of 46.18%. Our annotation efforts have revealed a total of 39 protein-coding genes (PCGs), 28 tRNA genes, and 3 rRNA genes within the V. chinshanense mitogenome. The analysis of repeated elements has identified 212 SSRs, 19 long tandem repeat elements, and 325 pairs of dispersed repeats in the V. chinshanense mitogenome. Additionally, we have investigated mitochondrial plastid DNAs (MTPTs) and identified 21 MTPTs within the mitogenome and plastidial genome. These MTPTs collectively span a length of 9,902 bp, accounting for 1.54% of the mitogenome. Moreover, employing Deepred-mt, we have confidently predicted 623 C to U RNA editing sites across the 39 protein-coding genes. Furthermore, extensive genomic rearrangements have been observed between V. chinshanense and the mitogenomes of related species. Interestingly, we have also identified a bacterial-derived tRNA gene (trnC-GCA) in the V. chinshanense mitogenome. Lastly, we have inferred the phylogenetic relationships of V. chinshanense with other angiosperms based on mitochondrial PCGs. CONCLUSIONS: This study marks the first report of a mitogenome from the Viburnum genus, offering a valuable genomic resource for exploring the evolution of mitogenomes within the Dipsacales order.


Assuntos
Genoma Mitocondrial , Viburnum , Genoma Mitocondrial/genética , Viburnum/genética , Filogenia , Genômica , RNA de Transferência/genética
6.
BMC Plant Biol ; 23(1): 132, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882685

RESUMO

BACKGROUND: The cactus family (Cactaceae) has been reported to have evolved a minimal photosynthetic plastome size, with the loss of inverted-repeat (IR) regions and NDH gene suites. However, there are very limited genomic data on the family, especially Cereoideae, the largest subfamily of cacti. RESULTS: In the present study, we assembled and annotated 35 plastomes, 33 of which were representatives of Cereoideae, alongside 2 previously published plastomes. We analyzed the organelle genomes of 35 genera in the subfamily. These plastomes have variations rarely observed in those of other angiosperms, including size differences (with ~ 30 kb between the shortest and longest), dramatic dynamic changes in IR boundaries, frequent plastome inversions, and rearrangements. These results suggested that cacti have the most complex plastome evolution among angiosperms. CONCLUSION: These results provide unique insight into the dynamic evolutionary history of Cereoideae plastomes and refine current knowledge of the relationships within the subfamily.


Assuntos
Cactaceae , Magnoliopsida , Rearranjo Gênico , Genômica , Fotossíntese
7.
BMC Plant Biol ; 23(1): 84, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750935

RESUMO

BACKGROUND: The complex physical structure and abundant repeat sequences make it difficult to assemble the mitogenomes of seed plants, especially gymnosperms. Only approximately 33 mitogenomes of gymnosperms have been reported. However, as the most widely distributed and the second largest family among gymnosperms, Cupressaceae has only six assembled mitogenomes, including five draft mitogenomes and one complete mitogenome, which has greatly hindered the understanding of mitogenome evolution within this large family, even gymnosperms. RESULTS: In this study, we assembled and validated the complete mitogenome of Thuja sutchuenensis, with a size of 2.4 Mb. Multiple sequence units constituted its complex structure, which can be reduced to three linear contigs and one small circular contig. The analysis of repeat sequences indicated that the numbers of simple sequence repeats increased during the evolutionary history of gymnosperms, and the mitogenome of Thuja sutchuenensis harboured abundant extra-long repeats (more than 5 kb). Additionally, the longest repeat sequence identified in these seven gymnosperms also came from the mitogenome of Thuja sutchuenensis, with a length of up to 47 kb. The analysis of colinear blocks and gene clusters both revealed that the orders of mitochondrial genes within gymnosperms was not conserved. The comparative analysis showed that only four tRNAs were shared by seven gymnosperms, namely, trnD-GUC, trnE-UUC, trnI-CAU and trnY-GUA. Furthermore, four genes have undergone potential positive selection in most gymnosperm species, namely, atp8, ccmB, mttB and sdh4. CONCLUSION: We successfully assembled the second complete mitogenome within Cupressaceae and verified that it consisted of multiple sequence units. Our study also indicated that abundant long repeats may contribute to the generation of the complex conformation of the mitogenome of Thuja sutchuenensis. The investigation of Thuja sutchuenensis's mitogenome in our study provides new insight into further understanding the complex mitogenome architecture within gymnosperms.


Assuntos
Cupressaceae , Genoma Mitocondrial , Thuja , Cupressaceae/genética , Sequências Repetitivas de Ácido Nucleico , Cycadopsida/genética , Filogenia
8.
Planta ; 258(5): 98, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831319

RESUMO

MAIN CONCLUSION: In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes. Caragana spinosa belongs to the Papilionoidea subfamily and has significant pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled and analyzed the plastome and mitogenome of C. spinosa using the Illumina and Nanopore DNA sequencing data. The plastome of C. spinosa was 129,995 bp belonging to the inverted repeat lacking clade (IRLC), which contained 77 protein-coding genes, 29 tRNA genes, and four rRNA genes. The mitogenome was 378,373 bp long and encoded 54 unique genes, including 33 protein-coding, three ribosomal RNA (rRNA), and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, alternative conformations mediated by one and four repetitive sequences in the plastome and mitogenome were identified and validated, respectively. The inverted repeat (PDR12, the 12th dispersed repeat sequence in C. spinosa plastome) of plastome mediating recombinant was conserved in the genus Caragana. Furthermore, we identified 14 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. A phylogenetic analysis of protein-coding genes extracted from the plastid and mitochondrial genomes revealed congruent topologies. Analyses of sequence divergence found one intergenic region, trnN-GUU-ycf1, exhibiting a high degree of variation, which can be used to develop novel molecular markers to distinguish the nine Caragana species accurately. This plastome and mitogenome of C. spinosa could provide critical information for the molecular breeding of C. spinosa and be used as a reference genome for other species of Caragana. In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes.


Assuntos
Caragana , Genoma Mitocondrial , Genomas de Plastídeos , Genoma Mitocondrial/genética , Caragana/genética , Filogenia , Plastídeos/genética , RNA de Transferência/genética
9.
Plant Cell Rep ; 42(4): 775-789, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774424

RESUMO

KEY MESSAGE: We reported the mitochondrial genome of Taraxacum mongolicum for the first time. Five pairs of repeats that can mediate recombination were validated, leading to multiple conformations of genome. Taraxacum mongolicum belongs to the Asteraceae family and has important pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled the complete mitochondrial genome (mitogenome) of T. mongolicum using Illumina and Oxford Nanopore sequencing data. This genome corresponded to a circular molecule 304,467 bp long. It encodes 52 unique genes including 31 protein-coding, 3 ribosomal RNA (rRNA) and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, the existence of alternative conformations mediated by five repetitive sequences in the mitogenome was identified and validated. Recombination mediated by the inverted repeats resulted in two conformations. Conversely, recombination mediated by the two direct repeats broke one large circular molecule into two subgenomic circular molecules. Furthermore, we identified 12 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. Lastly, we identified a total of 278 RNA-editing sites in protein-coding sequences based on RNA-seq data. Among them, cox1 and nad5 gene has the most sites (21), followed by the nad2 gene with 19 sites. We successfully validated 213 predicted RNA-editing sites using PCR amplification and Sanger sequencing. This project reported the first mitogenome of T. mongolicum and demonstrated its multiple conformations generated by repeat-mediated recombination. This genome could provide critical information for the molecular breeding of T. mongolicum, and also be used as a reference genome for other species of the genus Taraxacum.


Assuntos
Genoma Mitocondrial , Taraxacum , Genoma Mitocondrial/genética , Taraxacum/genética , Análise de Sequência de DNA , RNA Ribossômico/genética , Recombinação Genética , RNA de Transferência/genética , Filogenia
10.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176072

RESUMO

Pereskia aculeata is a potential new crop species that has both food and medicinal (antinociceptive activity) properties. However, comprehensive genomic research on P. aculeata is still lacking, particularly concerning its organelle genome. In this study, P. aculeata was studied to sequence the mitochondrial genome (mitogenome) and to ascertain the assembly, informational content, and developmental expression of the mitogenome. The findings revealed that the mitogenome of P. aculeata is circular and measures 515,187 bp in length with a GC content of 44.05%. It contains 52 unique genes, including 33 protein-coding genes, 19 tRNA genes, and three rRNA genes. Additionally, the mitogenome analysis identified 165 SSRs, primarily consisting of tetra-nucleotides, and 421 pairs of dispersed repeats with lengths greater than or equal to 30, which were mainly forward repeats. Based on long reads and PCR experiments, we confirmed that two pairs of long-fragment repetitive elements were highly involved with the mitogenome recombination process. Furthermore, there were 38 homologous fragments detected between the mitogenome and chloroplast genome, and the longest fragment was 3962 bp. This is the first report on the mitogenome in the family Cactaceae. The decoding of the mitogenome of P. aculeata will provide important genetic materials for phylogenetic studies of Cactaceae and promote the utilization of species germplasm resources.


Assuntos
Cactaceae , Genoma Mitocondrial , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Recombinação Genética
11.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982448

RESUMO

Our previous study was the first to confirm that the predominant conformation of mitochondrial genome (mitogenome) sequence of Salvia species contains two circular chromosomes. To further understand the organization, variation, and evolution of Salvia mitogenomes, we characterized the mitogenome of Salvia officinalis. The mitogenome of S. officinalis was sequenced using Illumina short reads and Nanopore long reads and assembled using a hybrid assembly strategy. We found that the predominant conformation of the S. officinalis mitogenome also had two circular chromosomes that were 268,341 bp (MC1) and 39,827 bp (MC2) in length. The S. officinalis mitogenome encoded an angiosperm-typical set of 24 core genes, 9 variable genes, 3 rRNA genes, and 16 tRNA genes. We found many rearrangements of the Salvia mitogenome through inter- and intra-specific comparisons. A phylogenetic analysis of the coding sequences (CDs) of 26 common protein-coding genes (PCGs) of 11 Lamiales species and 2 outgroup taxa strongly indicated that the S. officinalis was a sister taxon to S. miltiorrhiza, consistent with the results obtained using concatenated CDs of common plastid genes. The mapping of RNA-seq data to the CDs of PCGs led to the identification of 451 C-to-U RNA editing sites from 31 PCGs of the S. officinalis mitogenome. Using PCR amplification and Sanger sequencing methods, we successfully validated 113 of the 126 RNA editing sites from 11 PCGs. The results of this study suggest that the predominant conformation of the S. officinalis mitogenome are two circular chromosomes, and the stop gain of rpl5 was found through RNA editing events of the Salvia mitogenome.


Assuntos
Genoma Mitocondrial , Lamiaceae , Lamiales , Salvia officinalis , Lamiaceae/genética , Lamiales/genética , Filogenia , Edição de RNA/genética , RNA de Transferência/genética , RNA de Transferência/química
12.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298787

RESUMO

The transformations of physicochemical properties on manganese oxides during peroxymonosulfate (PMS) activation are vital factors to be concerned. In this work, Mn3O4 nanospheres homogeneously loaded on nickel foam are prepared, and the catalytic performance for PMS activation is evaluated by degrading a target pollutant, Acid Orange 7, in aqueous solution. The factors including catalyst loading, nickel foam substrate, and degradation conditions have been investigated. Additionally, the transformations of crystal structure, surface chemistry, and morphology on the catalyst have been explored. The results show that sufficient catalyst loading and the support of nickel foam play significant roles in the catalytic reactivity. A phase transition from spinel Mn3O4 to layered birnessite, accompanied by a morphological change from nanospheres to laminae, is clarified during the PMS activation. The electrochemical analysis reveals that more favorable electronic transfer and ionic diffusion occur after the phase transition so as to enhance catalytic performance. The generated SO4•- and •OH radicals through redox reactions of Mn are demonstrated to account for the pollutant degradation. This work will provide new understandings of PMS activation by manganese oxides with high catalytic activity and reusability.


Assuntos
Nanosferas , Níquel , Manganês , Óxidos/química , Peróxidos/química
13.
BMC Genomics ; 23(1): 481, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768783

RESUMO

BACKGROUND: Okra (Abelmoschus esculentus L. Moench) is an economically important crop and is known for its slimy juice, which has significant scientific research value. The A. esculentus chloroplast genome has been reported; however, the sequence of its mitochondrial genome is still lacking. RESULTS: We sequenced the plastid and mitochondrial genomes of okra based on Illumina short reads and Nanopore long reads and conducted a comparative study between the two organelle genomes. The plastid genome of okra is highly structurally conserved, but the mitochondrial genome of okra has been confirmed to have abundant subgenomic configurations. The assembly results showed that okra's mitochondrial genome existed mainly in the form of two independent molecules, which could be divided into four independent molecules through two pairs of long repeats. In addition, we found that four pairs of short repeats could mediate the integration of the two independent molecules into one complete molecule at a low frequency. Subsequently, we also found extensive sequence transfer between the two organelles of okra, where three plastid-derived genes (psaA, rps7 and psbJ) remained intact in the mitochondrial genome. Furthermore, psbJ, psbF, psbE and psbL were integrated into the mitochondrial genome as a conserved gene cluster and underwent pseudogenization as nonfunctional genes. Only psbJ retained a relatively complete sequence, but its expression was not detected in the transcriptome data, and we speculate that it is still nonfunctional. Finally, we characterized the RNA editing events of protein-coding genes located in the organelle genomes of okra. CONCLUSIONS: In the current study, our results not only provide high-quality organelle genomes for okra but also advance our understanding of the gene dialogue between organelle genomes and provide information to breed okra cultivars efficiently.


Assuntos
Abelmoschus , Genoma de Cloroplastos , Genoma Mitocondrial , Nanoporos , Abelmoschus/genética , Abelmoschus/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Melhoramento Vegetal
14.
BMC Genomics ; 23(1): 570, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35945507

RESUMO

BACKGROUND: Saposhnikovia divaricata (Turcz.) Schischk. is a perennial herb whose dried roots are commonly used as a source of traditional medicines. To elucidate the organelle-genome-based phylogeny of Saposhnikovia species and the transfer of DNA between organelle genomes, we sequenced and characterised the mitochondrial genome (mitogenome) of S. divaricata. RESULTS: The mitogenome of S. divaricata is a circular molecule of 293,897 bp. The nucleotide composition of the mitogenome is as follows: A, 27.73%; T, 27.03%; C, 22.39%; and G, 22.85. The entire gene content is 45.24%. A total of 31 protein-coding genes, 20 tRNAs and 4 rRNAs, including one pseudogene (rpl16), were annotated in the mitogenome. Phylogenetic analysis of the organelle genomes from S. divaricata and 10 related species produced congruent phylogenetic trees. Selection pressure analysis revealed that most of the mitochondrial genes of related species are highly conserved. Moreover, 2 and 46 RNA-editing sites were found in the chloroplast genome (cpgenome) and mitogenome protein-coding regions, respectively. Finally, a comparison of the cpgenome and the mitogenome assembled from the same dataset revealed 10 mitochondrial DNA fragments with sequences similar to those in the repeat regions of the cpgenome, suggesting that the repeat regions might be transferred into the mitogenome. CONCLUSIONS: In this study, we assembled and annotated the mitogenome of S. divaricata. This study provides valuable information on the taxonomic classification and molecular evolution of members of the family Apiaceae.


Assuntos
Apiaceae , Genoma de Cloroplastos , Genoma Mitocondrial , Apiaceae/genética , Cloroplastos/genética , Filogenia
15.
BMC Genomics ; 23(1): 745, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348277

RESUMO

BACKGROUND: Plums are one of the most important economic crops of the Rosaceae family and are produced all over the world. China has many local varieties, but the genomic information is limited for genetic studies. Here, we first sequenced, assembled, and analyzed the plastomes of twelve plum cultivars and developed molecular markers to distinguish them. RESULTS: The twelve plastomes of plum cultivars have a circular structure of 157,863-157,952 bp containing a large single-copy region (LSC) of 86,109-86,287 bp, a small copy region (SSC) of 18,927-19,031 bp, and two inverted repeats (IR) of 26,353-26,387 bp each. The plastomes of plum cultivars encode 131 genes, including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. We detected 50, 54, 54, 53, 53, 50, 54, 54, 54, 49, 50, 54 SSRs in the twelve analyzed varieties, respectively. For repeat sequences, we identified 553 tandem repeats, 204 direct repeats, and 270 palindromic repeats. We also analyzed the expansion/contraction of IR regions. The genes rpl22, rps19, rpl2, ycf1, ndhF, and the trnH span on or near the boundary of IR and single-copy regions. Phylogenetic analysis showed that the twelve cultivars were clustered with the P. salicina and P. domestica. We developed eight markers LZ01 to LZ08 based on whole plastomes and nuclear genes and validated them successfully with six repetitions. CONCLUSIONS: The results obtained here could fill in the blanks of the plastomes of these twelve plum cultivars and provide a wider perspective based on the basis of the plastomes of Prunus to the molecular identification and phylogenetic construction accurately. The analysis from this study provides an important and valuable resource for studying the genetic basis for agronomic and adaptive differentiation of the Prunus species.


Assuntos
Prunus domestica , Prunus , Rosaceae , Filogenia , Prunus domestica/genética , Prunus/genética , Rosaceae/genética , Sequência de Bases
16.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430747

RESUMO

Salvia miltiorrhiza has been an economically important medicinal plant. Previously, an S. miltiorrhiza mitochondrial genome (mitogenome) assembled from Illumina short reads, appearing to be a single circular molecule, has been published. Based on the recent reports on the plant mitogenome structure, we suspected that this conformation does not accurately represent the complexity of the S. miltiorrhiza mitogenome. In the current study, we assembled the mitogenome of S. miltiorrhiza using the PacBio and Illumina sequencing technologies. The primary structure of the mitogenome contained two mitochondrial chromosomes (MC1 and MC2), which corresponded to two major conformations, namely, Mac1 and Mac2, respectively. Using two approaches, including (1) long reads mapping and (2) polymerase chain reaction amplification followed by Sanger sequencing, we observed nine repeats that can mediate recombination. We predicted 55 genes, including 33 mitochondrial protein-coding genes (PCGs), 3 rRNA genes, and 19 tRNA genes. Repeat analysis identified 112 microsatellite repeats and 3 long-tandem repeats. Phylogenetic analysis using the 26 shared PCGs resulted in a tree that was congruent with the phylogeny of Lamiales species in the APG IV system. The analysis of mitochondrial plastid DNA (MTPT) identified 16 MTPTs in the mitogenome. Moreover, the analysis of nucleotide substitution rates in Lamiales showed that the genes atp4, ccmB, ccmFc, and mttB might have been positively selected. The results lay the foundation for future studies on the evolution of the Salvia mitogenome and the molecular breeding of S. miltiorrhiza.


Assuntos
Genoma Mitocondrial , Lamiales , Salvia miltiorrhiza , Salvia , DNA Mitocondrial/genética , Salvia miltiorrhiza/genética , Filogenia , Repetições de Microssatélites/genética , Cromossomos
17.
Physiol Mol Biol Plants ; 28(1): 123-137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221575

RESUMO

Selenicereus is a genus of perennial shrub from the family Cactaceae, and some of them play an important role in the food industry, pharmaceuticals, cosmetics and medicine. To date, there are few reports on Selenicereus plastomes, which limits our understanding of this genus. Here, we have reported the complete plastomes of four Selenicereus species (S. monacanthus, S. annthonyanus, S. grandifloras, and S. validus) and carried out a comprehensive comparative analysis. All four Selenicereus plastomes have a typical quartile structure. The plastome size ranged from 133,146 to 134,450 bp, and contained 104 unique genes, including 30 tRNA genes, 4 rRNA genes and 70 protein-coding genes. Comparative analysis showed that there were massive losses of ndh genes in Selenicereus. Besides, we observed the inverted repeat regions had undergone a dramatic expansion and formed a previously unreported small single copy/inverted repeat border in the intron region of the atpF gene. Furthermore, we identified 6 hypervariable regions (trnF-GAA-rbcL, ycf1, accD, clpP-trnS-GCU, clpP-trnT-CGU and rpl22-rps19) that could be used as potential DNA barcodes for the identification of Selenicereus species. Our study enriches the plastome in the family Cactaceae, and provides the basis for the reconstruction of phylogenetic relationships. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01121-z.

18.
BMC Plant Biol ; 21(1): 25, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413130

RESUMO

BACKGROUND: Pilea is a genus of perennial herbs from the family Urticaceae, and some species are used as courtyard ornamentals or for medicinal purposes. At present, there is no information about the plastid genome of Pilea, which limits our understanding of this genus. Here, we report 4 plastid genomes of Pilea taxa (Pilea mollis, Pilea glauca 'Greizy', Pilea peperomioides and Pilea serpyllacea 'Globosa') and performed comprehensive comparative analysis. RESULTS: The four plastid genomes all have a typical quartile structure. The lengths of the plastid genomes ranged from 150,398 bp to 152,327 bp, and each genome contained 113 unique genes, including 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. Comparative analysis showed a rather high level of sequence divergence in the four genomes. Moreover, eight hypervariable regions were identified (petN-psbM, psbZ-trnG-GCC, trnT-UGU-trnL-UAA, accD-psbI, ndhF-rpl32, rpl32-trnL-UAG, ndhA-intron and ycf1), which are proposed for use as DNA barcode regions. Phylogenetic relationships based on the plastid genomes of 23 species of 14 genera of Urticaceae resulted in the placement of Pilea in the middle and lower part of the phylogenetic tree, with 100% bootstrap support within Urticaceae. CONCLUSION: Our results enrich the resources concerning plastid genomes. Comparative plastome analysis provides insight into the interspecific diversity of the plastid genome of Pilea. The identified hypervariable regions could be used for developing molecular markers applicable in various research areas.


Assuntos
Evolução Molecular , Genoma de Planta , Genomas de Plastídeos , Plantas Medicinais/genética , Urticaceae/genética , China , Transferência Genética Horizontal , Variação Genética , Filogenia , Análise de Sequência de DNA
19.
Planta ; 254(5): 99, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34665332

RESUMO

MAIN CONCLUSION: Six Mazaceae plastomes were assembled in this study, including the newly recognized genus, Puchiumazus. Comparative plastid genomic analysis provided new insights into Mazaceae. The phylogenetic categorization of Mazus lanceifolius (Mazaceae) has long been uncertain. In 2021, the scholars Bo Li, D. G. Zhang, and C. L. Xiang republished M. lanceifolius as a new species Puchiumazus lanceifolius, within a new genus Puchiumazus. However, there is little plastome information on Mazaceae. Following the publishing of the new genus Puchiumazus, it is now necessary to study the Mazaceae plastome features to comprehensively understand this young family. The Mazaceae plastomes all have a typical quartile structure. The plastomes have a size ranging from 152,388 to 154,252 bp, and each plastome contains 112 unique genes, including 78 protein-coding genes, 4 rRNA genes, and 30 tRNA genes. A comparative analysis showed that these plastome sequences are highly conserved. Furthermore, we identified four relatively hypervariable regions (trnQ-UUC-psbK, trnS-GCU- trnS-CGA, trnT-UGU-trnL-UAA and ycf1) that can be used as potential DNA barcodes for the identification of this clade. Phylogenetic relationships based on the whole plastome sequences of 25 samples of 14 genera of Lamiales placed M. lanceifolius in the basal clade of the family Mazaceae, with 100% bootstrap support. In summary, the M. lanceifolius results indicate that a new monotype genus (Puchiumazus) should be established at the whole-plastome level. This study provides plastid genomic resources for exploring the phylogeny of Mazaceae.


Assuntos
Evolução Molecular , Lamiales , Genômica , Filogenia , Plastídeos/genética
20.
Planta ; 254(2): 36, 2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34302538

RESUMO

MAIN CONCLUSION: We assembled the complete mitochondrial genome of Scutellaria tsinyunensis in this study. Repeat-mediated recombination resulted in the formation of two conformations of the mitochondrial genome in S. tsinyunensis. Scutellaria tsinyunensis belongs to the family Lamiaceae, distributed only in the Jinyun Mountain, Chongqing, China. As a valuable endemic and small population species, it is regarded as a natural resource potentially with significant economic and ecological importance. In this study, we assembled a complete and gap-free mitochondrial genome of S. tsinyunensis. This genome had a length of 354,073 bp and the base composition of the genome was A (27.44%), T (27.30%), C (22.58%), and G (22.68%). This genome encodes 59 genes, including 32 protein-coding genes, 24 tRNA genes, and 3 rRNA genes. The Sanger sequencing and Oxford Nanopore sequencing confirmed a pair of direct repeats had mediated genome recombination, resulting in the formation of two conformations. The gene conversation between plastome and mitochondrial genome was also observed in S. tsinyunensis by detecting gene migration, including six tRNA genes (namely, trnW-CCA, trnI-CAU, trnH-UUU, trnD-GUC, trnN-GUU, and trnM-CAU), five protein-coding gene fragments, and the fragments from 2 rRNA genes. Moreover, the dN/dS analysis revealed the atp9 gene had undergone strong negative selection, and four genes (atp4, mttB, ccmFc, and ccmB) probably had undergone positive selection during evolution in Lamiales. This work reported the first mitochondrial genome of S. tsinyunensis, which could be used as a reference genome for the important medicinal plants of the genus Scutellaria, and also provide much-desired information for molecular breeding.


Assuntos
Genoma Mitocondrial , Scutellaria , Composição de Bases , China , Genoma Mitocondrial/genética , Recombinação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA