Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 8991-9003, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513217

RESUMO

Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 µM) compared to the conventional anticancer agent, oxaliplatin (300 µM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Rutênio , Humanos , Rutênio/farmacologia , Espécies Reativas de Oxigênio , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Lisossomos , Linhagem Celular Tumoral
2.
Eur J Neurosci ; 59(3): 446-456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123158

RESUMO

The anterior cingulate cortex (ACC) and visual cortex are integral components of the neurophysiological mechanisms underlying migraine, yet the impact of altered connectivity patterns between these regions on migraine treatment remains unknown. To elucidate this issue, we investigated the abnormal causal connectivity between the ACC and visual cortex in patients with migraine without aura (MwoA), based on the resting-state functional magnetic resonance imaging data, and its predictive ability for the efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs). The results revealed increased causal connectivity from the bilateral ACC to the lingual gyrus (LG) and decreased connectivity in the opposite direction in nonresponders compared with the responders. Moreover, compared with the healthy controls, nonresponders exhibited heightened causal connectivity from the ACC to the LG, right inferior occipital gyrus (IOG) and left superior occipital gyrus, while connectivity patterns from the LG and right IOG to the ACC were diminished. Based on the observed abnormal connectivity patterns, the support vector machine (SVM) models showed that the area under the receiver operator characteristic curves for the ACC to LG, LG to ACC and bidirectional models were 0.857, 0.898, and 0.939, respectively. These findings indicate that neuroimaging markers of abnormal causal connectivity in the ACC-visual cortex circuit may facilitate clinical decision-making regarding NSAIDs administration for migraine management.


Assuntos
Enxaqueca sem Aura , Córtex Visual , Humanos , Giro do Cíngulo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Enxaqueca sem Aura/patologia , Córtex Visual/diagnóstico por imagem , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios , Encéfalo
3.
Anal Chem ; 96(19): 7651-7660, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690989

RESUMO

Development of molecular diagnostics for lung cancer stratification and monitoring is crucial for the rational planning and timely adjustment of treatments to improve clinical outcomes. In this regard, we propose a nanocavity architecture to sensitively profile the protein signature on small extracellular vesicles (sEVs) to enable accurate, noninvasive staging and treatment monitoring of lung cancer. The nanocavity architecture is formed by molecular recognition through the binding of sEVs with the nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and mirrorlike, asymmetric gold microelectrodes. By imposing an alternating current on the gold microelectrodes, a nanofluidic shear force was stimulated that supported the binding of sEVs and the efficient assembly of the nanoboxes. The binding of sEVs further induced a nanocavity between the nanobox and the gold microelectrode that significantly amplified the electromagnetic field to enable the simultaneous enhancement of Raman signals from four SERS barcodes and generate patient-specific molecular sEV signatures. Importantly, evaluated on a cohort of clinical samples (n = 76) on the nanocavity architecture, the acquired patient-specific sEV molecular signatures achieved accurate identification, stratification, and treatment monitoring of lung cancer patients, highlighting its potential for transition to clinical utility.


Assuntos
Vesículas Extracelulares , Ouro , Neoplasias Pulmonares , Análise Espectral Raman , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Humanos , Ouro/química , Microeletrodos
4.
Anal Chem ; 96(11): 4495-4504, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445954

RESUMO

The molecular detection of multiple respiratory viruses provides evidence for the rational use of drugs and effective health management. Herein, we developed and tested the clinical performance of an electrohydrodynamic-driven nanobox-on-mirror platform (E-NoM) for the parallel, accurate, and sensitive detection of four respiratory viral antigens. The E-NoM platform uses gold-silver alloy nanoboxes as the core material with the deposition of a silver layer as a shell on the core surfaces to amplify and enable a reproducible Raman signal readout that facilitates accurate detection. Additionally, the E-NoM platform employs gold microelectrode arrays as the mirror with electrohydrodynamics to manipulate the fluid flow and enhance molecular interactions for an improved biosensing response. The presence of viral antigens binds the nanobox-based core-shell nanostructure on the gold microelectrode and creates the nanocavity with extremely strong "hot spots" to benefit sensitive analysis. Significantly, in a large clinical cohort with 227 patients, the designed E-NoM platform demonstrates the capability of screening respiratory infection with achieved clinical specificity, sensitivity, and accuracy of 100.0, 96.48, and 96.91%, respectively. It is anticipated that the E-NoM platform can find a position in clinical usage for respiratory disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Vírus , Humanos , Nanopartículas Metálicas/química , Prata/química , Ouro/química , Antígenos Virais , Análise Espectral Raman
5.
Analyst ; 149(3): 859-869, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38167646

RESUMO

High efficiency, stability, long emission wavelength (NIR-II), and good biocompatibility are crucial for photosensitizers in phototherapy. However, current Food and Drug Administration (FDA)-approved organic fluorophores exhibit poor chemical stability and photostability as well as short emission wavelength, limiting their clinical usage. To address this, we developed Se-IR1100, a novel organic photosensitizer with a photostable and thermostable benzobisthiadiazole (BBTD) backbone. By incorporating selenium as a heavy atom and constructing a D-A-D structure, Se-IR1100 exhibits a maximum fluorescence emission wavelength of 1100 nm. Compared with FDA-approved indocyanine green (ICG), DSPE-PEGylated Se-IR1100 nanoparticles exhibit prominent photostability and long-lasting photothermal effects. Upon 808 nm laser irradiation, Se-IR1100 NPs efficiently convert light energy into heat and reactive oxygen species (ROS), inducing cancer cell death in cellular studies and living organisms while maintaining biocompatibility. With salient photostability and a photothermal conversion rate of 55.37%, Se-IR1100 NPs hold promise as a superior photosensitizer for diagnostic and therapeutic agents in oncology. Overall, we have designed and optimized a multifunctional photosensitizer Se-IR1100 with good biocompatibility that performs NIR-II fluorescence imaging and phototherapy. This dual-strategy method may offer novel approaches for the development of multifunctional probes using dual-strategy or even multi-strategy methods in bioimaging, disease diagnosis, and therapy.


Assuntos
Nanopartículas , Neoplasias , Selênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Verde de Indocianina/toxicidade , Nanopartículas/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
6.
Methods ; 216: 11-20, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295579

RESUMO

The implementation of early cancer detection benefits the treatment outcomes with remarkably improved survival rate through the detection of rare circulating biomarkers in body fluids. Spectroscopic technologies play a crucial role in sensitive biomarker measurements by outputting extremely strong signals. In particular, the aggregation enhanced fluorescence and Raman technologies feature the detection of targets down to single-molecule level, thereby demonstrating the great promise of early cancer detection. In this review, we focus on the aggregation-induced emission (AIE) and aggregation-related surface-enhanced Raman scattering (SERS) spectroscopic strategies for detecting cancer biomarkers. We discuss the AIE and SERS based biomarker detection using target-driven aggregation as well as the aggregated nanoprobes. Furthermore, we deliberate on the progress of developing AIE and SERS integrated platforms. Ultimately, we put forth the potential challenges and perspectives on the way to use these two spectroscopic technologies in clinical settings. It is expected this review can inspire the design of AIE and SERS integrated platform for highly sensitive and accurate cancer detection.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Biomarcadores Tumorais , Análise Espectral Raman/métodos , Nanotecnologia , Neoplasias/diagnóstico , Nanopartículas Metálicas/química
7.
J Environ Manage ; 366: 121714, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032253

RESUMO

Antibiotic shock may potentially impact the performance of promising microalgae-nitrifying bacteria consortia (MNBC) processes. This study investigated physiological behaviors of MNBC under sulfamethoxazole (SMX) shock (mg/L level) and verified a light regulating strategy for improving process performance. Results showed that SMX shock did not affect ammonium removal but caused nitrite accumulation, resulting from combined effects of excessive reactive oxidative species (ROS) production, inhibited microalgal photosynthetic activity, upregulated expressions of amoA and hao, and downregulated expression of nxrA. Moreover, high ammonium concentration aggravated nitrite accumulation and reduced ammonium removal owing to significantly reduced dissolved oxygen (DO). Increasing light intensity enhanced microalgal photo-oxygenation and promoted expressions of all nitrification-related genes, thus improving ammonium removal and alleviating nitrite accumulation. A central composite design coupled with response surface methodology (CCD-RSM) further demonstrated the negative impacts of SMX shock and high ammonium on MNBC and the effectiveness of the light regulation in maintaining stable process performance. This study provides theoretical basis for physiological responses and regulatory strategy of the MNBC process facing short-term antibiotic shock.

8.
J Sci Food Agric ; 104(7): 4342-4353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38328855

RESUMO

BACKGROUND: Non-nutritive sweeteners (NNS) are commonly used in sweetened foods and beverages; however their role in metabolic regulation is still not clear. In this experiment, we used guinea pigs as an animal model to study the effect of NNS on body growth and intestinal health by modifying gut microbiota and hypothalamus-related proteins. RESULTS: For a 28-day feeding experiment a total of 40 guinea pigs were randomly divided into four groups, one control (CN) group and three treatments, in which three NNS were added to the diet: rebaudioside A (RA, 330 mg kg-1), sodium saccharin (SS, 800 mg kg-1), and sucralose (TGS, 167 mg kg-1), respectively. The TGS group exhibited significantly reduced food consumption in comparison with the CN group (P < 0.05) whereas the RA group showed increased food consumption in comparison with the CN group (P < 0.05). Notably, Taste receptor type 1 subunit 2 (T1R2) expression in the hypothalamus was significantly higher in the RA group than in the CN group (P < 0.05). The mRNA expressions of appetite-stimulated genes arouti-related neuropeptide (AGRP), neuropeptide Y (NPY), and thyroid stimulating hormone (TSHB) were significantly higher than those in the CN group (P < 0.05) but mRNA expressions of appetite-suppressed genes tryptophan hydroxylase 2(THP2) were significantly lower in the TGS group (P < 0.05). Furthermore, NNS in the guinea pig diets (RA, SS, TGS) significantly increased the relative abundance of Muribaculaceae but decreased the relative abundance of Clostridia_vadin BB60 in comparison with the CN group (P < 0.05). We also found that dietary supplementation with RA also significantly altered the relative abundance of Lactobacillus. CONCLUSION: Our finding confirmed that dietary supplementation with RA and TGS affected body growth and intestinal health by modulating hypothalamic RNA profiles and ileum microbiota, suggesting that NNS should be included in guinea-pig feeding. © 2024 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Adoçantes não Calóricos , Cobaias , Animais , Peso Corporal , Íleo , RNA Mensageiro
9.
J Headache Pain ; 25(1): 104, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902598

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are considered first-line medications for acute migraine attacks. However, the response exhibits considerable variability among individuals. Thus, this study aimed to explore a machine learning model based on the percentage of amplitude oscillations (PerAF) and gray matter volume (GMV) to predict the response to NSAIDs in migraine treatment. METHODS: Propensity score matching was adopted to match patients having migraine with response and nonresponse to NSAIDs, ensuring consistency in clinical characteristics and migraine-related features. Multimodal magnetic resonance imaging was employed to extract PerAF and GMV, followed by feature selection using the least absolute shrinkage and selection operator regression and recursive feature elimination algorithms. Multiple predictive models were constructed and the final model with the smallest predictive residuals was chosen. The model performance was evaluated using the area under the receiver operating characteristic (ROCAUC) curve, area under the precision-recall curve (PRAUC), balance accuracy (BACC), sensitivity, F1 score, positive predictive value (PPV), and negative predictive value (NPV). External validation was performed using a public database. Then, correlation analysis was performed between the neuroimaging predictors and clinical features in migraine. RESULTS: One hundred eighteen patients with migraine (59 responders and 59 non-responders) were enrolled. Six features (PerAF of left insula and left transverse temporal gyrus; and GMV of right superior frontal gyrus, left postcentral gyrus, right postcentral gyrus, and left precuneus) were observed. The random forest model with the lowest predictive residuals was selected and model metrics (ROCAUC, PRAUC, BACC, sensitivity, F1 score, PPV, and NPV) in the training and testing groups were 0.982, 0.983, 0.927, 0.976, 0.930, 0.889, and 0.973; and 0.711, 0.648, 0.639, 0.667,0.649, 0.632, and 0.647, respectively. The model metrics of external validation were 0.631, 0.651, 0.611, 0.808, 0.656, 0.553, and 0.706. Additionally, a significant positive correlation was found between the GMV of the left precuneus and attack time in non-responders. CONCLUSIONS: Our findings suggest the potential of multimodal neuroimaging features in predicting the efficacy of NSAIDs in migraine treatment and provide novel insights into the neural mechanisms underlying migraine and its optimized treatment strategy.


Assuntos
Anti-Inflamatórios não Esteroides , Substância Cinzenta , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Neuroimagem , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/diagnóstico por imagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Feminino , Adulto , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/patologia , Neuroimagem/métodos , Aprendizado de Máquina , Pessoa de Meia-Idade , Biomarcadores
10.
Fish Shellfish Immunol ; 137: 108771, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100308

RESUMO

Annexin A2 (AnxA2) is ubiquitous in vertebrates and has been identified as a multifunctional protein participating in a series of biological processes, such as endocytosis, exocytosis, signal transduction, transcription regulation, and immune responses. However, the function of AnxA2 in fish during virus infection still remains unknown. In this study, we identified and characterized AnxA2 (EcAnxA2) in Epinephelus coioides. EcAnxA2 encoded a 338 amino acids protein with four identical annexin superfamily conserved domains, which shared high identity with other AnxA2 of different species. EcAnxA2 was widely expressed in different tissues of healthy groupers, and its expression was significantly increased in grouper spleen cells infected with red-spotted grouper nervous necrosis virus (RGNNV). Subcellular locatio n analyses showed that EcAnxA2 diffusely distributed in the cytoplasm. After RGNNV infection, the spatial distribution of EcAnxA2 was unaltered, and a few EcAnxA2 co-localized with RGNNV during the late stage of infection. Furthermore, overexpression of EcAnxA2 significantly increased RGNNV infection, and knockdown of EcAnxA2 reduced RGNNV infection. In addition, overexpressed EcAnxA2 reduced the transcription of interferon (IFN)-related and inflammatory factors, including IFN regulatory factor 7 (IRF7), IFN stimulating gene 15 (ISG15), melanoma differentiation related gene 5 (MDA5), MAX interactor 1 (Mxi1) laboratory of genetics and physiology 2 (LGP2), IFN induced 35 kDa protein (IFP35), tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin 6 (IL-6). The transcription of these genes was up-regulated when EcAnxA2 was inhibited by siRNA. Taken together, our results showed that EcAnxA2 affected RGNNV infection by down-regulating the host immune response in groupers, which provided new insights into the roles of AnxA2 in fish during virus infection.


Assuntos
Anexina A2 , Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Animais , Imunidade Inata/genética , Anexina A2/genética , Anexina A2/metabolismo , Sequência de Aminoácidos , Alinhamento de Sequência , Proteínas de Peixes/química , Nodaviridae/fisiologia
11.
BMC Gastroenterol ; 23(1): 429, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062366

RESUMO

BACKGROUND AND PURPOSE: Chronic gastritis, especially that caused by helicobacter pylori (HP) infection, has been associated with increased risk of ischemic stroke. But the relationship between chronic gastritis and cerebral small vessel disease (CSVD) remains largely undetermined. This study aimed to determine the potential predictors for CSVD, with chronic gastritis and its proxies as alternatives. METHOD: Patients aged 18 years or older with indications for electronic gastroscopy were enrolled. Presence of CSVD was evaluated with brain magnetic resonance imaging (MRI) results. Degree of CSVD was scored according to established criteria. Logistic regression analysis was used for identifying possible risk factors for CSVD. RESULTS: Of the 1191 enrolled patients, 757 (63.6%) were identified as with, and 434 (36.4%) as without CSVD. Multivariate analysis indicated that patients with chronic atrophic gastritis had an increased risk for CSVD than those without (adjusted odds ratio = 1.58; 95% CI, 1.08-2.32; P < 0.05). CONCLUSIONS: Chronic atrophic gastritis is associated with the presence of CSVD. We should routinely screen the presence of CSVD for patients with chronic atrophic gastritis.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Gastrite Atrófica , Humanos , Gastrite Atrófica/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Imageamento por Ressonância Magnética , Encéfalo , Fatores de Risco
12.
Anal Bioanal Chem ; 415(18): 4061-4077, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119357

RESUMO

Increasing evidence supports the critical role of saccharides in various pathophysiological steps of tumor progression, where they regulate tumor proliferation, invasion, hematogenic metastasis, and angiogenesis. The identification and recognition of these saccharides provide a solid foundation for the development of targeted drug preparations, which are however not fully understood due to their complex and similar structures. In order to achieve fluorescence sensing of saccharides, extensive research has been conducted to design molecular probes and nanoparticles made of different materials. This paper aims to provide in-depth discussion of three main topics that cover the current status of the carbohydrate sensing based on the fluorescence sensing mechanism, including a phenylboronic acid-based sensing platform, non-boronic acid entities, as well as an enzyme-based sensing platform. It also highlights efforts made to understand the recognition mechanisms and improve the sensing properties of these systems. Finally, we present the challenge of achieving high selectivity and sensitivity recognition of saccharides, and suggest possible future avenues for exploration.


Assuntos
Carboidratos , Nanopartículas , Fluorescência , Carboidratos/química , Sondas Moleculares
13.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762536

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic, incurable condition characterized by mucosal inflammation and intestinal epithelial cell (IEC) damage. The circadian clock gene NR1D1, implicated in UC and the critical mitophagy process for epithelial repair, needs further exploration regarding its role in mitophagy regulation in UC. METHODS: We created a jet lag mouse model and induced colitis with dextran sulfate sodium (DSS), investigating NR1D1's role. Intestinal-specific Nr1d1 knockout mice were also generated. RNA sequencing, chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays helped ascertain NR1D1's regulatory effect on BNIP3 expression. The mitochondrial state in IECs was assessed through transmission electron microscopy, while confocal microscopy evaluated mitophagy-associated protein expression in colon tissue and CCD841 cells. Cell apoptosis and reactive oxygen species (ROS) were measured via flow cytometry. RESULTS: We observed reduced NR1D1 expression in the IECs of UC patients, accentuated under jet lag and DSS exposure in mice. NR1D1 ablation led to disrupted immune homeostasis and declined mitophagy in IECs. NR1D1, usually a transcriptional repressor, was a positive regulator of BNIP3 expression, leading to impaired mitophagy, cellular inflammation, and apoptosis. Administering the NR1D1 agonist SR9009 ameliorated colitis symptoms, primarily by rectifying defective mitophagy. CONCLUSIONS: Our results suggest that NR1D1 bridges the circadian clock and UC, controlling BNIP3-mediated mitophagy and representing a potential therapeutic target. Its agonist, SR9009, shows promise in UC symptom alleviation.


Assuntos
Colite Ulcerativa , Colite , Animais , Humanos , Camundongos , Colite/induzido quimicamente , Colite/genética , Colite Ulcerativa/genética , Inflamação , Síndrome do Jet Lag , Proteínas de Membrana/genética , Mitofagia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Proteínas Proto-Oncogênicas/genética
14.
Angew Chem Int Ed Engl ; 62(15): e202301560, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786535

RESUMO

Although metallacycle-based supramolecular photosensitizers (PSs) have attracted increasing attention in biomedicine, their clinical translation is still hindered by their inherent dark toxicity. Herein, we report what to our knowledge is the first example of a molecular engineering approach to building blocks of metallacycles for constructing a series of supramolecular PSs (RuA-RuD), with the aim of simultaneously reducing dark toxicity and enhancing phototoxicity, and consequently obtaining high phototoxicity indexes (PI). Detailed in vitro investigations demonstrate that RuA-RuD display high cancer cellular uptake and remarkable antitumor activity even under hypoxic conditions. Notably, RuD exhibited no dark toxicity and displayed the highest PI value (≈406). Theoretical calculations verified that RuD has the largest steric hindrance and the lowest singlet-triplet energy gap (ΔEST , 0.61 eV). Further in vivo studies confirmed that RuD allows safe and effective phototherapy against A549 tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Neoplasias/tratamento farmacológico
15.
Anal Chem ; 94(42): 14573-14582, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36222247

RESUMO

Immune checkpoint blockade (ICB) therapy has achieved remarkable success in many cancers including melanoma. However, ICB therapy benefits only a small proportion of patients and produces severe side effects for some patients. Thus, there is an urgent need to identify patients who are more likely to respond to ICB therapy to improve outcomes and minimize side effects. To predict ICB therapy responses, we design a surface-enhanced Raman scattering (SERS) assay for multiplex profiling of circulating tumor cells (CTCs) under basal and interferon-γ (IFN-γ) stimulation. Through simultaneous ensemble and single-cell measurements of CTCs, the SERS assay can reveal tumor heterogeneity and offer a comprehensive CTC phenotype for decision-making. Anisotropic gold-silver alloy nanoboxes are utilized as SERS plasmonic substrates for improved signal readouts of CTC surface biomarkers. By generating a unique CTC signature with four surface biomarkers, the developed assay enables the differentiation of CTCs from three different patient-derived melanoma cell lines. Significantly, in a cohort of 14 melanoma patients who received programmed cell death-1 blockade therapy, the changes of CTC signature induced by IFN-γ stimulation to CTCs show the potential to predict responders. We expect that the SERS assay can help select patients for receiving ICB therapy in other cancers.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Humanos , Inibidores de Checkpoint Imunológico , Prata , Interferon gama , Melanoma/tratamento farmacológico , Melanoma/patologia , Ouro , Biomarcadores , Ligas
16.
Anal Chem ; 94(41): 14177-14184, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36194728

RESUMO

Dengue disease is an emerging global threat triggered by dengue virus (DENV) transmission, primarily by the mosquito Aedes aegypti. The accurate surveillance and sensitive detection of DENV in mosquito populations are critical for the protection of human populations worldwide that are in the habitat of these mosquito species. There are four DENV serotypes with DENV2 reported to cause the most severe complications. There are limited ultrasensitive methods to early detect DENV2 mosquito infection and prevent human infection. Herein, we report an innovative nanobased immunoassay platform for early, specific, and ultrasensitive detection of DENV2-secreted nonstructural 1 (NS1) protein biomarker in single infected mosquitoes with the limit of detection of 500 fg of recombinant DENV2 NS1. The high sensitivity and DENV2 serotype specificity of the platform are the result of using nanomixing, plasmonic SERS nanoboxes, and yeast affinity bionanofragments displaying single-chain variable fragments (nanoyeast scFvs). Nanoyeast scFvs used for high affinity capture of DENV2 NS1 provided an innovative and cost-efficient alternative to monoclonal antibodies and differentiated DENV2 NS1 from other DENV serotypes and Zika virus NS1. The platform used electrohydrodynamically driven nanomixing to enhance NS1 capture by the nanoyeast scFvs while reducing nonspecific interactions. High sensitivity detection of captured DENV2 NS1 was achieved using NS1-specific surface-enhanced Raman scattering (SERS) nanotags. These nanotechnologies provide a significant innovation for early DENV2 detection in single infected mosquitoes, improving the accurate surveillance of mosquito habitats and preventing infection and severe disease arising from DENV2 transmission.


Assuntos
Aedes , Vírus da Dengue , Dengue , Anticorpos de Cadeia Única , Infecção por Zika virus , Zika virus , Animais , Anticorpos Monoclonais , Dengue/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Saccharomyces cerevisiae , Proteínas não Estruturais Virais
17.
Neural Plast ; 2022: 9941832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035474

RESUMO

Background: Visual symptoms are common in patients with migraine, even in interictal periods. The purpose was to assess the association between dynamic functional connectivity (dFC) of the visual cortex and clinical characteristics in migraine without aura (MwoA) patients. Methods: We enrolled fifty-five MwoA patients as well as fifty gender- and age-matched healthy controls. Regional visual cortex alterations were investigated using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF). Then, significant regions were selected as seeds for conducting dFC between the visual cortex and the whole brain. Results: Relative to healthy controls, MwoA patients exhibited decreased ReHo and ALFF values in the right lingual gyrus (LG) and increased ALFF values in the prefrontal cortex. The right LG showed abnormal dFC within the visual cortex and with other core brain networks. Additionally, ReHo values for the right LG were correlated with duration of disease and ALFF values of the right inferior frontal gyrus and middle frontal gyrus were correlated with headache frequency and anxiety scores, respectively. Moreover, the abnormal dFC of the right LG with bilateral cuneus was positively correlated with anxiety scores. Conclusions: The dFC abnormalities of the visual cortex may be involved in pain integration with multinetworks and associated with anxiety disorder in episodic MwoA patients.


Assuntos
Encéfalo/diagnóstico por imagem , Enxaqueca sem Aura/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Adulto , Encéfalo/fisiopatologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Enxaqueca sem Aura/fisiopatologia , Rede Nervosa/fisiopatologia , Vias Visuais/fisiopatologia , Adulto Jovem
18.
BMC Genomics ; 22(1): 542, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266380

RESUMO

BACKGROUND: Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered protein posttranslational modification (PTM) and is involved in the broad-spectrum regulation of cellular processes that are found in both prokaryotic and eukaryotic cells, including in plants. The Chinese herb rhubarb (Dahuang) is one of the most widely used traditional Chinese medicines in clinical applications. To better understand the physiological activities and mechanism of treating diseases with the herb, it is necessary to conduct intensive research on rhubarb. However, Khib modification has not been reported thus far in rhubarb. RESULTS: In this study, we performed the first global analysis of Khib-modified proteins in rhubarb by using sensitive affinity enrichment combined with high-accuracy HPLC-MS/MS tandem spectrometry. A total of 4333 overlapping Khib modification peptides matched on 1525 Khib-containing proteins were identified in three independent tests. Bioinformatics analysis showed that these Khib-containing proteins are involved in a wide range of cellular processes, particularly in protein biosynthesis and central carbon metabolism and are distributed mainly in chloroplasts, cytoplasm, nucleus and mitochondria. In addition, the amino acid sequence motif analysis showed that a negatively charged side chain residue (E), a positively charged residue (K), and an uncharged residue with the smallest side chain (G) were strongly preferred around the Khib site, and a total of 13 Khib modification motifs were identified. These identified motifs can be classified into three motif patterns, and some motif patterns are unique to rhubarb and have not been identified in other plants to date. CONCLUSIONS: A total of 4333 Khib-modified peptides on 1525 proteins were identified. The Khib-modified proteins are mainly distributed in the chloroplast, cytoplasm, nucleus and mitochondria, and involved in a wide range of cellular processes. Moreover, three types of amino acid sequence motif patterns, including EKhib/KhibE, GKhib and k.kkk….Khib….kkkkk, were extracted from a total of 13 Khib-modified peptides. This study provides comprehensive Khib-proteome resource of rhubarb. The findings from the study contribute to a better understanding of the physiological roles of Khib modification, and the Khib proteome data will facilitate further investigations of the roles and mechanisms of Khib modification in rhubarb.


Assuntos
Haemophilus influenzae tipo b , Rheum , China , Haemophilus influenzae tipo b/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Rheum/metabolismo , Espectrometria de Massas em Tandem
19.
Anal Chem ; 93(29): 10251-10260, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34264067

RESUMO

The implementation of accurate and sensitive molecular detection for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is paramount to effectively control the ongoing coronavirus disease 2019 (COVID-19) pandemic. In this regard, we herein propose the specific and highly sensitive SARS-CoV-2 detection based on nanoyeast single-chain-variable fragment (scFv) and ultrasensitive plasmonic nanobox-integrated nanomixing microassay. Importantly, this designed platform showcases the utility of nanoyeast-scFvs as specific capture reagents targeting the receptor-binding domain (RBD) of the virus and as monoclonal antibody alternatives suitable for cost-effective mass production and frequent testing. By capitalizing on single-particle active nanoboxes as plasmonic nanostructures for surface-enhanced Raman scattering (SERS), the microassay utilizes highly sensitive Raman signals to indicate virus infection. The developed microassay further integrated nanomixing for accelerating molecular collisions. Through the synergistic working of nanoyeast-scFv, plasmonic nanoboxes, and nanomixing, the highly specific and sensitive SARS-CoV-2 detection is achieved as low as 17 virus/µL without any molecular amplification. We successfully demonstrate SARS-CoV-2 detection in saliva samples of simulated patients at clinically relevant viral loads, suggesting the possibility of this platform for accurate and noninvasive patient screening.


Assuntos
COVID-19 , Anticorpos de Cadeia Única , Humanos , SARS-CoV-2 , Saliva , Análise Espectral Raman
20.
BMC Cancer ; 21(1): 877, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332557

RESUMO

BACKGROUND: Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, have achieved good efficacy in EGFR mutation-positive non-small-cell lung cancer (NSCLC) patients, but eventual drug resistance is inevitable. Thus, new TKI-based combination therapies should be urgently explored to extend the overall survival time of these patients. CD8 + CD56+ natural killer T (NKT) cells are a natural and unique subset of lymphocytes in humans that present characteristics of T and NK cells and exert cytotoxicity on tumour cells in a granzyme B-dependent manner. The aim of this trial was to explore the efficacy and safety of CD8 + CD56+ NKT cell immunotherapy combined with gefitinib in patients with advanced EGFR-mutated NSCLC. METHODS: The study was designed as a prospective, randomized, controlled, open-label, phase I/II trial that includes 30 patients with EGFR mutation-positive stage III/IV NSCLC. All patients will be randomized in blocks at a 1:1 ratio and treated with gefitinib 250 mg/day monotherapy or combination therapy with allogeneic CD8 + CD56+ NKT cell infusions twice per month for 12 cycles or until disease progression occurs. The effectiveness of this treatment will be evaluated based on by progression-free survival (PFS), the time to progression (TTP), overall response rate (ORR), disease control rate (DCR) and overall survival (OS). The safety of the trail is being assessed based on adverse events (AEs). Recruitment and data collection, which started in December 2017, are ongoing. DISCUSSION: Although immunotherapy, including programmed death-1/programmed death-1 ligand (PD-1/PD-L1) immunotherapy, has been used for NSCLC treatment with or without EGFR-TKIs, its clear efficacy still has not been shown. Assessing the safety and therapeutic potential of allogeneic CD8 + CD56+ NKT killer cells in combination with EGFR-TKIs in NSCLC will be of great interest. TRIAL REGISTRATION: This trial (Phase I/II Trails of NKT Cell in Combination With Gefitinib For Non Small Cell Lung Cancer) was registered on 21 November 2017 with www.chictr.org.cn , ChiCTR-IIR-17013471 .


Assuntos
Transferência Adotiva , Carcinoma Pulmonar de Células não Pequenas/terapia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/terapia , Mutação , Células T Matadoras Naturais/imunologia , Transferência Adotiva/efeitos adversos , Transferência Adotiva/métodos , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/etiologia , Terapia Combinada , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Gefitinibe/administração & dosagem , Gefitinibe/efeitos adversos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/etiologia , Terapia de Alvo Molecular , Células T Matadoras Naturais/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA