Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 22(5): 5512-21, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663891

RESUMO

We propose an elliptical sub-aperture stitching (ESAS) method to measure the aspheric surfaces. In our method, the non-null configuration is used to overcome the disadvantages of the null testing. By adding the dynamic tilt, the different local nearly null fringe patterns are obtained and the corresponding phase data in the elliptical masks is extracted with negligible retrace errors. In order to obtain the full aperture result, a stitching algorithm is developed to stitch all the phase data together. We firstly show the principle of our method. Then the performance of the proposed method is analyzed by simulation experiments. In the end, practical examples are given to demonstrate the correctness of the proposed method. The stitching result shows a good agreement with the full-aperture null testing result.

2.
J Biomed Opt ; 23(8): 1-12, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30112881

RESUMO

Constructing models of cells' realistic internal and external morphology is vital for correlation between light scattering and morphology of the scattering structure. The image stack obtained from fluorescent confocal microscopy is at present used to construct the cell's three-dimensional (3-D) morphology. However, due to the poor labeling quality and unavoidable optical noise present in the image stacks, 3-D morphologies are difficult to construct and are an impediment to the statistical analyses of cell structures. We propose a method called the "area and shape constraint method (ASCM)" for constructing 3-D morphology. Blurred 3-D morphologies constructed by common methods from image stacks considered as defective and which are commonly discarded are well restored by the ASCM. Seventy-four clinical blood samples and a series of standard fluorescent spheres are selected to evaluate the validity and precision of our proposed ASCM. Both the qualitative and quantitative results obtained by ASCM indicate the good performance of the method in constructing the cell's 3-D morphology.


Assuntos
Imageamento Tridimensional/métodos , Linfócitos/citologia , Microscopia Confocal/métodos , Espalhamento de Radiação , Adulto , Feminino , Humanos , Reprodutibilidade dos Testes
3.
Rev Sci Instrum ; 87(4): 044301, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27131687

RESUMO

Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 µm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 µm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.


Assuntos
Contagem de Células , Citometria de Fluxo , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA