Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Cell Rep ; 35(1): 115-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26441057

RESUMO

KEY MESSAGE: Six foxtail millet ASR genes were regulated by various stress-related signals. Overexpression of ASR1 increased drought and oxidative tolerance by controlling ROS homeostasis and regulating oxidation-related genes in tobacco plants. Abscisic acid stress ripening (ASR) proteins with ABA/WDS domains constituted a class of plant-specific transcription factors, playing important roles in plant development, growth and abiotic stress responses. However, only a few ASRs genes have been characterized in crop plants and none was reported so far in foxtail millet (Setaria italic), an important drought-tolerant crop and model bioenergy grain crop. In the present study, we identified six foxtail millet ASR genes. Gene structure, protein alignments and phylogenetic relationships were analyzed. Transcript expression patterns of ASR genes revealed that ASRs might play important roles in stress-related signaling and abiotic stress responses in diverse tissues in foxtail millet. Subcellular localization assays showed that SiASR1 localized in the nucleus. Overexpression of SiASR1 in tobacco remarkably increased tolerance to drought and oxidative stresses, as determined through developmental and physiological analyses of germination rate, root growth, survival rate, relative water content, ion leakage, chlorophyll content and antioxidant enzyme activities. Furthermore, expression of SiASR1 modulated the transcript levels of oxidation-related genes, including NtSOD, NtAPX, NtCAT, NtRbohA and NtRbohB, under drought and oxidative stress conditions. These results provide a foundation for evolutionary and functional characterization of the ASR gene family in foxtail millet.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Setaria (Planta)/fisiologia , Fatores de Transcrição/metabolismo , Antioxidantes/metabolismo , Secas , Expressão Gênica , Germinação , Estresse Oxidativo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Setaria (Planta)/genética , Transdução de Sinais , Estresse Fisiológico , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética
2.
Biochem Biophys Res Commun ; 468(4): 800-6, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26577407

RESUMO

Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation.


Assuntos
Arabidopsis/fisiologia , Secas , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Setaria (Planta)/fisiologia , Estresse Fisiológico/fisiologia , Autofagia/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Melhoramento Genético/métodos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Distribuição Tecidual , Regulação para Cima/fisiologia
3.
Funct Integr Genomics ; 14(4): 717-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344442

RESUMO

The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.


Assuntos
Adaptação Fisiológica/genética , Genes de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Triticum/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Congelamento , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/metabolismo
4.
J Exp Bot ; 64(10): 2915-27, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23682116

RESUMO

Phosphoinositides are involved in regulation of recruitment and activity of signalling proteins in cell membranes. Phosphatidylinositol (PI) 4-kinases (PI4Ks) generate PI4-phosphate the precursor of regulatory phosphoinositides. No type II PI4K research on the abiotic stress response has previously been reported in plants. A stress-inducible type II PI4K gene, named TaPI4KIIγ, was obtained by de novo transcriptome sequencing of drought-treated wheat (Triticum aestivum). TaPI4KIIγ, localized on the plasma membrane, underwent threonine autophosphorylation, but had no detectable lipid kinase activity. Interaction of TaPI4KIIγ with wheat ubiquitin fusion degradation protein (TaUDF1) indicated that it might be hydrolysed by the proteinase system. Overexpression of TaPI4KIIγ revealed that it could enhance drought and salt stress tolerance during seed germination and seedling growth. A ubdkγ7 mutant, identified as an orthologue of TaPI4KIIγ in Arabidopsis, was sensitive to salt, polyethylene glycol (PEG), and abscisic acid (ABA), and overexpression of TaPI4KIIγ in the ubdkγ7 mutant compensated stress sensitivity. TaPI4KIIγ promoted root growth in Arabidopsis, suggesting that TaPI4KIIγ might enhance stress resistance by improving root growth. Overexpression of TaPI4KIIγ led to an altered expression level of stress-related genes and changes in several physiological traits that made the plants more tolerant to stress. The results provided evidence that overexpression of TaPI4KIIγ could improve drought and salt tolerance.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Cloreto de Sódio/metabolismo , Treonina/metabolismo , Triticum/enzimologia , 1-Fosfatidilinositol 4-Quinase/química , 1-Fosfatidilinositol 4-Quinase/genética , Arabidopsis/genética , Secas , Expressão Gênica , Dados de Sequência Molecular , Fosforilação , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal , Sais/metabolismo , Triticum/química , Triticum/classificação , Triticum/genética
5.
Int J Mol Sci ; 14(1): 701-13, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23344040

RESUMO

The voltage-dependent anion channel (VDAC), a highly conserved major mitochondrial outer membrane protein, plays crucial roles in energy metabolism and metabolite transport. However, knowledge about the roles of the VDAC family in plants is limited. In this study, we investigated the expression pattern of VDAC1 in Arabidopsis and found that cold stress promoted the accumulation of VDAC1 transcripts in imbibed seeds and mature plants. Overexpression of VDAC1 reduced tolerance to cold stress in Arabidopsis. Phenotype analysis of VDAC1 T-DNA insertion mutant plants indicated that a vdac1 mutant line had faster germination kinetics under cold treatment and showed enhanced tolerance to freezing. The yeast two-hybrid system revealed that VDAC1 interacts with CBL1, a calcium sensor in plants. Like the vdac1, a cbl1 mutant also exhibited a higher seed germination rate. We conclude that both VDAC1 and CBL1 regulate cold stress responses during seed germination and plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Temperatura Baixa , Plântula/genética , Canal de Ânion 1 Dependente de Voltagem/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/genética , Mutação , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Canal de Ânion 1 Dependente de Voltagem/metabolismo
6.
Biochem Biophys Res Commun ; 427(4): 731-6, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23044418

RESUMO

Although extensive studies and remarkable progress have been made with Arabidopsis calcineurin B-like proteins (CBLs), knowledge of their functions in other plant species is still limited. Here we isolated gene GmCBL1 from soybean, a homolog of AtCBL1 in Arabidopsis. GmCBL1 was differentially induced by multiple abiotic stress and plant hormones, and its transcripts were abundant in seedlings and mature roots. We over-expressed GmCBL1 in Arabidopsis and found that it enhanced tolerances to both high salt and drought stresses in the transgenic plants. Overexpression of GmCBL1 also promoted hypocotyl elongation under light conditions. GmCBL1 may regulate stress tolerance through activation of stress-related genes, and may control hypocotyl development by altering the expression of gibberellin biosynthesis-related genes. This study identifies a putative soybean CBL gene that functions in both stress tolerance and light-dependent hypocotyl development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Glycine max/metabolismo , Hipocótilo/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Secas , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Giberelinas/genética , Hipocótilo/genética , Hipocótilo/efeitos da radiação , Luz , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Glycine max/genética , Estresse Fisiológico/genética
7.
Biochem Biophys Res Commun ; 426(4): 522-7, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22982312

RESUMO

As the most recently characterized group of plant hormones, brassinosteroids (BR) are involved in a number of physiological responses. Although many key components of the BR signaling pathway have been isolated and characterized, there is little information on detailed characterization of brassinosteroid-signaling kinase (BSK) proteins. In this study, Arabidopsis BSK5 was isolated and functionally analyzed. BSK5 transcripts were detected in various tissues, and were induced by abiotic stresses including salt and drought, as well as phytohormones of BR and abscisic acid (ABA). Arabidopsis loss-of-function mutant bsk5 exhibited sensitivity to salinity and ABA. Mutations of the BSK5 gene also altered the expression of several stress-regulated genes. We suggest that BSK5 responds to other signals as well as BR.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Quinases/fisiologia , Salinidade , Estresse Fisiológico/fisiologia , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas Quinases/genética , Estresse Fisiológico/genética
8.
Int J Mol Sci ; 13(12): 15706-23, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23443089

RESUMO

The heat shock protein 90 (Hsp90) family mediates stress signal transduction, and plays important roles in the control of normal growth of human cells and in promoting development of tumor cells. Hsp90s have become a currently important subject in cellular immunity, signal transduction, and anti-cancer research. Studies on the physiological functions of Hsp90s began much later in plants than in animals and fungi. Significant progress has been made in understanding complex mechanisms of HSP90s in plants, including ATPase-coupled conformational changes and interactions with cochaperone proteins. A wide range of signaling proteins interact with HSP90s. Recent studies revealed that plant Hsp90s are important in plant development, environmental stress response, and disease and pest resistance. In this study, the plant HSP90 family was classified into three clusters on the basis of phylogenetic relationships, gene structure, and biological functions. We discuss the molecular functions of Hsp90s, and systematically review recent progress of Hsp90 research in plants.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas de Plantas , Plantas , Estresse Fisiológico/fisiologia , Proteínas de Choque Térmico HSP90/classificação , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
9.
J Integr Plant Biol ; 53(7): 570-85, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21676172

RESUMO

Plants have acquired sophisticated stress response systems to adapt to changing environments. It is important to understand plants' stress response mechanisms in the effort to improve crop productivity under stressful conditions. The AP2/ERF transcription factors are known to regulate diverse processes of plant development and stress responses. In this study, the molecular characteristics and biological functions of AP2/ERFs in a variety of plant species were analyzed. AP2/ERFs, especially those in DREB and ERF subfamilies, are ideal candidates for crop improvement because their overexpression enhances tolerances to drought, salt, freezing, as well as resistances to multiple diseases in the transgenic plants. The comprehensive analysis of physiological functions is useful in elucidating the biological roles of AP2/ERF family genes in gene interaction, pathway regulation, and defense response under stress environments, which should provide new opportunities for the crop tolerance engineering.


Assuntos
Produtos Agrícolas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética
10.
Biochem Genet ; 47(3-4): 301-14, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19191020

RESUMO

Nicotiana rustica L. HZNH, a native Chinese tobacco germplasm, displays a hypersensitive response (HR) and systemic acquired resistance following infection with tobacco mosaic virus (TMV). A resistance gene, CN, cloned from HZNH plants, was homologous to the N and NH genes identified in other Nicotiana species. The CN coding region (3423 bp) shares 93.63% and 86.50% nucleotide identity with N and NH, respectively. Whereas the five CN exon sequences are highly homologous with those of N and NH, the four introns differ significantly in length and sequence. Sequence analysis revealed that CN belongs to the TIR/NBS/LRR gene class. Expression of CN was up-regulated after TMV infection and was temperature sensitive. Organ-specific expression analysis suggested that CN transcripts accumulated at high levels in leaves, low levels in stems, and minimal levels in roots. When CN was inserted into TMV-susceptible N. tabacum cv. K326 plants by Agrobacterium-mediated transformation, the transgenic plants displayed HR and systemic HR due to uninhibited movement of the virus.


Assuntos
Genes de Plantas/fisiologia , Nicotiana/genética , Proteínas de Plantas/genética , Vírus do Mosaico do Tabaco/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Vírus do Mosaico do Tabaco/patogenicidade
11.
J Integr Plant Biol ; 51(1): 58-66, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19166495

RESUMO

Protein kinases play crucial roles in response to external environment stress signals. A putative protein kinase, W55a, belonging to SNF1-related protein kinase 2 (SnRK2) subfamily, was isolated from a cDNA library of drought-treated wheat seedlings. The entire length of W55a was obtained using rapid amplification of 5' cDNA ends (5'-RACE) and reverse transcription-polymerase chain reaction(RT-PCR). It contains a 1,029 -bp open reading frame (ORF) encoding 342 amino acids. The deduced amino acid sequence of W55a had eleven conserved catalytic subdomains and one Ser/Thr protein kinase active-site that characterize Ser/Thr protein kinases. Phylogenetic analysis showed that W55a was 90.38% homologous with rice SAPK1, a member of the SnRK2 family. Using nullisomic-tetrasomic and ditelocentric lines of Chinese Spring, W55a was located on chromosome 2BS. Expression pattern analysis revealed that W55a was upregulated by drought and salt, exogenous abscisic acid, salicylic acid, ethylene and methyl jasmonate, but was not responsive to cold stress. In addition, W55a transcripts were abundant in leaves, but not in roots or stems, under environmental stresses. Transgenic Arabidopsis plants overexpressing W55a exhibited higher tolerance to drought. Based on these findings, W55a encodes a novel dehydration-responsive protein kinase that is involved in multiple stress signal transductions.


Assuntos
Proteínas de Plantas/genética , Proteínas Quinases/genética , Estresse Fisiológico , Triticum/enzimologia , Adaptação Fisiológica , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Cromossomos de Plantas/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , Proteínas Quinases/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/genética
12.
J Exp Bot ; 59(15): 4095-107, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18832187

RESUMO

Members of the ERF transcription factor family play important roles in regulating gene expression in response to biotic and abiotic stresses. In soybean (Glycine max L.), however, only a few ERF genes have been studied so far. In this study, 98 unigenes that contained a complete AP2/ERF domain were identified from 63,676 unique sequences in the DFCI Soybean Gene Index database. The phylogeny, gene structures, and putative conserved motifs in soybean ERF proteins were analysed, and compared with those of Arabidopsis and rice. The members of the soybean ERF family were divided into 12 subgroups, similar to the case for Arabidopsis. AP2/ERF domains were conserved among soybean, Arabidopsis, and rice. Outside the AP2/ERF domain, many soybean-specific conserved motifs were detected. Expression analysis showed that nine unigenes belonging to six ERF family subgroups were induced by both biotic/abiotic stresses and hormone treatment, suggesting that they were involved in cross-talk between biotic and abiotic stress-responsive signalling pathways. Overexpression of two full-length genes from two different subgroups enhanced the tolerances to drought, salt stresses, and/or pathogen infection of the tobacco plants. These results will be useful for elucidating ERF gene-associated stress response signalling pathways in soybean.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/classificação , Arabidopsis/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Glycine max/química , Glycine max/classificação , Glycine max/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
13.
Mol Plant ; 10(9): 1206-1223, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28827171

RESUMO

Hypocotyl development in Arabidopsis thaliana is regulated by light and endogenous hormonal cues, making it an ideal model to study the interplay between light and endogenous growth regulators. BBX21, a B-box (BBX)-like zinc-finger transcription factor, integrates light and abscisic acid signals to regulate hypocotyl elongation in Arabidopsis. Heterotrimeric G-proteins are pivotal regulators of plant development. The short hypocotyl phenotype of the G-protein ß-subunit (AGB1) mutant (agb1-2) has been previously identified, but the precise role of AGB1 in hypocotyl elongation remains enigmatic. Here, we show that AGB1 directly interacts with BBX21, and the short hypocotyl phenotype of agb1-2 is partially suppressed in agb1-2bbx21-1 double mutant. BBX21 functions in the downstream of AGB1 and overexpression of BBX21 in agb1-2 causes a more pronounced reduction in hypocotyl length, indicating that AGB1 plays an oppositional role in relation to BBX21 during hypocotyl development. Furthermore, we demonstrate that the C-terminal region of BBX21 is important for both its intracellular localization and its transcriptional activation activity that is inhibited by interaction with AGB1. ChIP assays showed that BBX21 specifically associates with its own promoter and with those of BBX22, HY5, and GA2ox1. which is not altered in agb1-2. These data suggest that the AGB1-BBX21 interaction only affects the transcriptional activation activity of BBX21 but has no effect on its DNA binding ability. Taken together, our data demonstrate that AGB1 positively promotes hypocotyl elongation through repressing BBX21 activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Giberelinas/farmacologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/efeitos da radiação , Luz , Modelos Biológicos , Fenótipo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/efeitos da radiação , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Frações Subcelulares/metabolismo , Fatores de Transcrição/química , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/efeitos da radiação
14.
Genes Genet Syst ; 80(1): 35-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15824454

RESUMO

By optimizing the concentration and time of treatment with hydroxyurea (HU), a DNA synthesis inhibitor, and trifluralin, a microtubule inhibitor, a highly effective (over 60%) cell cycle synchronization method for rye and barley meristem cells was developed. Chromosome suspensions containing highly purified and morphologically intact rye and barley chromosomes were prepared from the meristems of their root tips by homogenization. Digoxigenin-labeled 5S rDNA was used as a probe in FISH for the rye chromosomes in the suspension, and biotin-labeled 17S rDNA and centromeric DNA were used in FISH for the rye and barley chromosome suspensions, respectively. Bright signals were detected at the specific regions of interest on the chromosomes. The results indicate that the method developed in this study is useful for selection and sorting of chromosomes that are not distinguishable by other means, using specific fluorescent labeling by FISH of the chromosomes in suspension.


Assuntos
Cromossomos de Plantas/química , DNA Ribossômico/química , Hibridização in Situ Fluorescente , Oryza/química , Secale/química , Hibridização in Situ Fluorescente/métodos , Cariotipagem/métodos
15.
PLoS One ; 10(1): e0116385, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635681

RESUMO

Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Desidratação/metabolismo , Regulação para Baixo , Secas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais
16.
PLoS One ; 9(7): e101136, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24988301

RESUMO

Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD (P) +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA). Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli) was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing the functional roles of foxtail millet ALDH genes in stress responses.


Assuntos
Aldeído Desidrogenase/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Família Multigênica/fisiologia , Proteínas de Plantas/biossíntese , Setaria (Planta)/enzimologia , Aldeído Desidrogenase/genética , Proteínas de Plantas/genética , Tolerância ao Sal/fisiologia , Setaria (Planta)/genética , Estresse Fisiológico/fisiologia
17.
PLoS One ; 8(2): e56412, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437128

RESUMO

Glucose and phytohormones such as abscisic acid (ABA), ethylene, and gibberellin (GA) coordinately regulate germination and seedling development. However, there is still inadequate evidence to link their molecular roles in affecting plant responses. Calcium acts as a second messenger in a diverse range of signal transduction pathways. As calcium sensors unique to plants, calcineurin B-like (CBL) proteins are well known to modulate abiotic stress responses. In this study, it was found that CBL1 was induced by glucose in Arabidopsis. Loss-of-function mutant cbl1 exhibited hypersensitivity to glucose and paclobutrazol, a GA biosynthetic inhibitor. Several sugar-responsive and GA biosynthetic gene expressions were altered in the cbl1 mutant. CBL1 protein physically interacted with AKINß1, the regulatory ß subunit of the SnRK1 complex which has a central role in sugar signaling. Our results indicate a novel role for CBL1 in modulating responses to glucose and GA signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Germinação/efeitos dos fármacos , Giberelinas/farmacologia , Glucose/farmacologia , Plântula/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Germinação/genética , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Reação em Cadeia da Polimerase em Tempo Real , Plântula/efeitos dos fármacos , Plântula/metabolismo , Triazóis/farmacologia
18.
PLoS One ; 8(10): e73989, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098330

RESUMO

Oxidative stress caused by accumulation of reactive oxygen species (ROS) is capable of damaging effects on numerous cellular components. Glutathione peroxidases (GPXs, EC 1.11.1.9) are key enzymes of the antioxidant network in plants. In this study, W69 and W106, two putative GPX genes, were obtained by de novo transcriptome sequencing of salt-treated wheat (Triticum aestivum) seedlings. The purified His-tag fusion proteins of W69 and W106 reduced H2O2 and t-butyl hydroperoxide (t-BHP) using glutathione (GSH) or thioredoxin (Trx) as an electron donor in vitro, showing their peroxidase activity toward H2O2 and toxic organic hydroperoxide. GFP fluorescence assays revealed that W69 and W106 are localized in chloroplasts. Quantitative real-time PCR (Q-RT-PCR) analysis showed that two GPXs were differentially responsive to salt, drought, H2O2, or ABA. Isolation of the W69 and W106 promoters revealed some cis-acting elements responding to abiotic stresses. Overexpression of W69 and W106 conferred strong tolerance to salt, H2O2, and ABA treatment in Arabidopsis. Moreover, the expression levels of key regulator genes (SOS1, RbohD and ABI1/ABI2) involved in salt, H2O2 and ABA signaling were altered in the transgenic plants. These findings suggest that W69 and W106 not only act as scavengers of H2O2 in controlling abiotic stress responses, but also play important roles in salt and ABA signaling.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/farmacologia , Cloreto de Sódio/farmacologia , Triticum/enzimologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Glutationa Peroxidase/química , Glutationa Peroxidase/genética , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Transporte Proteico , Estresse Fisiológico/efeitos dos fármacos , Triticum/genética
19.
J Plant Res ; 122(1): 121-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19067111

RESUMO

A gene encoding Hordeum vulgare dehydration-responsive element binding protein 1 (HvDREB1), a member of the A-2 subgroup of the DREB subfamily, was isolated from barley seedlings. A subcellular localization assay revealed accumulation of HvDREB1 protein in the nucleus. As a trans-acting factor, HvDREB1 was able to bind to DRE/CRT elements and transactivate reporter gene expression in yeast cells. A study of various deletion mutants of HvDREB1 proteins indicated that the transactivation activity was localized to the N-terminal region. Expression of the HvDREB1 gene in barley leaves was significantly induced by salt, drought, and low-temperature. In contrast to most A-2 subgroup members in Arabidopsis thaliana, HvDREB1 also responded to exogenous ABA. Overexpression of HvDREB1 activated a downstream gene, RD29A, under normal growth conditions and led to increased tolerance to salt stress in Arabidopsis plants. These results suggest that HvDREB1 produces a DRE-/CRT-binding transcription factor that may have an important role in improving salt tolerance in plants.


Assuntos
Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas , Hordeum/genética , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/farmacologia , Ativação Transcricional
20.
Plant Cell Rep ; 28(2): 301-11, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19005655

RESUMO

A cotton (G. hirsutum L.) dehydration responsive element binding protein gene, GhDREB, which encodes a 153 amino acid protein containing a conserved AP2/EREBP domain, was isolated from the cDNA library of cotton cv. Simian 3 by a yeast one-hybrid system. RNA blot analysis showed that the GhDREB gene was induced in cotton seedlings by drought, high salt and cold stresses. An electrophoretic mobility shift assay (EMSA) indicated that the GhDREB protein bound specifically to the DRE core element (A/GCCGAC) in vitro. Two expression vectors containing the GhDREB gene with either of the Ubiqutin or rd29A promoters were constructed and transferred into wheat (Triticum aestivum L.) by bombardment. Fifty-eight Ubi::GhDREB and 17 rd29A::GhDREB T(0) plants of Yangmai (36 plants) and Lumai (39 plants) were identified by PCR analysis, respectively. Southern blot and RT-PCR analyses showed that two or three copies of the GhDREB were integrated into the Yangmai 10 genome and were expressed at the transcriptional level, and three or four copies were integrated into the Lumai 23 genome. Functional analysis indicated that the transgenic plants had improved tolerance to drought, high salt, and freezing stresses through accumulating higher levels of soluble sugar and chlorophyll in leaves after stress treatments. No phenotype differences were observed between transgenic plants and their non-transgenic controls. These results indicated that GhDREB might be useful in improving wheat stress tolerance through genetic engineering.


Assuntos
Secas , Congelamento , Gossypium/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Cloreto de Sódio/farmacologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Gossypium/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA