Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Acta Pharmacol Sin ; 43(7): 1733-1748, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34789918

RESUMO

Acetaminophen (APAP) is one of the major causes of drug-induced acute liver injury, and ethanol may aggravate APAP-induced liver injury. The problem of ethanol- and APAP-induced liver injury becomes increasingly prominent, but the mechanism of ethanol- and APAP-induced liver injury remains ambiguous. p38γ is one of the four isoforms of P38 mitogen activated protein kinases, that contributes to inflammation in different diseases. In this study we investigated the role of p38γ in ethanol- and APAP-induced liver injury. Liver injury was induced in male C57BL/6 J mice by giving liquid diet containing 5% ethanol (v/v) for 10 days, followed by gavage of ethanol (25% (v/v), 6 g/kg) once or injecting APAP (200 mg/kg, ip), or combined the both treatments. We showed that ethanol significantly aggravated APAP-induced liver injury in C57BL/6 J mice. Moreover, the expression level of p38γ was up-regulated in the liver of ethanol-, APAP- and ethanol+APAP-treated mice. Knockdown of p38γ markedly attenuated liver injury, inflammation, and steatosis in ethanol+APAP-treated mice. Liver sections of p38γ-knockdown mice displayed lower levels of Oil Red O stained dots and small leaky shapes. AML-12 cells were exposed to APAP (5 mM), ethanol (100 mM) or combined treatments. We showed that P38γ was markedly increased in ethanol+APAP-treated AML-12 cells, whereas knockdown of p38γ significantly inhibited inflammation, lipid accumulation and oxidative stress in ethanol+APAP-treated AML-12 cells. Furthermore, we revealed that p38γ could combine with Dlg1, a member of membrane-associated guanylate kinase family. Deletion of p38γ up-regulated the expression level of Dlg1 in ethanol+APAP-treated AML-12 cells. In summary, our results suggest that p38γ functions as an important regulator in ethanol- and APAP-induced liver injury through modulation of Dlg1.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Leucemia Mieloide Aguda , Acetaminofen/efeitos adversos , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/toxicidade , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
J Cell Physiol ; 236(8): 5453-5465, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400276

RESUMO

RNF2 (also known as ding, Ring1B or Ring2) is a member of the Ring finger protein family, which functions as E3 ubiquitin ligase for monoubiquitination of histone H2A at lysine 119 (H2AK119ub). RNF2 gene is located at the 1q25.3 site of human chromosome and the coding region is composed of 9 exons, encoding 336 amino acids in total. Many studies have demonstrated that overexpressed RNF2 was involved in the pathological progression of multiple cancers and has an impact on their clinical features. For instance, the upregulated expression level of RNF2 is positively correlated with the occurrence and progression of hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, pancreatic cancer, gastric cancer, and bladder urothelial carcinoma, as well as with the radioresistance of lung cancer and chemoresistance of ovarian cancer. This review provides an up-to-date perspective on the relationship between RNF2 and several cancers and highlights recent studies on RNF2 regulation. In particular, the relevant cellular signaling pathways and potential clinical value of RNF2 in cancers are also discussed, suggesting its potential as an epigenetic biomarker and therapeutic target for these cancers.


Assuntos
Carcinoma de Células de Transição/genética , Regulação Neoplásica da Expressão Gênica/genética , Complexo Repressor Polycomb 1/metabolismo , Neoplasias da Bexiga Urinária/genética , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Histonas/metabolismo , Humanos , Ubiquitinação , Neoplasias da Bexiga Urinária/metabolismo
3.
Acta Pharmacol Sin ; 42(10): 1676-1689, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33514855

RESUMO

Zinc finger E-box-binding homeobox 1 (ZEB1), a functional protein of zinc finger family, was aberrant expressed in many kinds of liver disease including hepatic fibrosis and Hepatitis C virus. Bioinformatics results showed that ZEB1 was abnormally expressed in HCC tissues. However, to date, the potential regulatory role and molecular mechanisms of ZEB1 are still unclear in the occurrence and development of HCC. This study demonstrated that the expression level of ZEB1 was significantly elevated both in liver tissues of HCC patients and cell lines (HepG2 and SMMC-7721 cells). Moreover, ZEB1 could promote the proliferation, migration, and invasion of HCC cells. On the downstream regulation mechanism, ZEB1 could activate the Wnt/ß-catenin signaling pathway by upregulating the protein expression levels of ß-catenin, c-Myc, and cyclin D1. Novel studies showed that miR-708 particularly targeted ZEB1 3'-UTR regions and inhibited the HCC cell proliferation, migration, and invasion. Furthermore, results of nude mice experiments of HCC model indicated that miR-708 could inhibit tumor growth and xenograft metastasis model was established to validate that miR-708 could inhibit HCC cell metastasis through tail-vein injection in vivo. Together, the study suggested that ZEB1 modulated by miR-708 might be a potential therapeutic target for HCC therapy.


Assuntos
Apoptose/fisiologia , Carcinoma Hepatocelular/fisiopatologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Via de Sinalização Wnt/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Adulto , Idoso , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica/fisiopatologia
4.
Inflamm Res ; 69(8): 789-800, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32451556

RESUMO

OBJECTIVE: Transmembrane protein 88 (TMEM88), a new protein of increasing concern existed in cell membrane, inhibits the typical Wnt/ß-catenin signaling pathway to play a regulatory role on cell proliferation by binding to Dishevelled-1. Until recently, the connection between TMEM88 and alcoholic liver disease is unknown. In this research, we explored the effect of TMEM88 on the secretion of inflammatory cytokines in ethanol (EtOH)-induced RAW264.7 cells, moreover, the function of YAP signaling pathway in EtOH-induced RAW264.7 cells were investigated. METHODS: We administered TMEM88 adenovirus (ADV-TMEM88) by tail vein injection into C57BL/6J mice in vivo. In vitro, RAW264.7 murine macrophages were stimulated with EtOH and were transfected with pEGFP-C1-TMEM88 and TMEM88 siRNA, respectively, protein expression and mRNA expression of IL-6 and IL-1ß were assessed by Western Blotting and RT-qPCR, respectively. RESULTS: Our group found that the overexpression of TMEM88 led to an up-regulation of IL-6 and IL-1ß secretion, hinting that it had the possibility of linking with the initiation, the development, and the end of inflammation. In addition to that, TMEM88 silencing reduced the secretion of IL-6 and IL-1ß in RAW264.7 cells. Moreover, we demonstrated that the YAP signaling pathway under the action of EtOH was activated by TMEM88. CONCLUSIONS: All in all, these experimental outcomes indicated that TMEM88 had an indispensable impact on EtOH-induced secretion of inflammatory cytokines (IL-6 and IL-1ß) in RAW264.7 cells through YAP signaling pathway.


Assuntos
Citocinas/biossíntese , Lipoproteínas/fisiologia , Hepatopatias Alcoólicas/etiologia , Proteínas de Membrana/fisiologia , Transativadores/fisiologia , Animais , Apoptose/efeitos dos fármacos , Etanol/farmacologia , Hepatopatias Alcoólicas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais/fisiologia
5.
Pharmacol Res ; 150: 104501, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31689520

RESUMO

Alcoholic liver disease (ALD) is a major cause of chronic liver disease worldwide that afflicts human health. With the in-depth study of the disease, its pathogenesis has gradually become clear. Although great breakthroughs have been made in the research of ALD, the research and development of drugs related to ALD has lagged behind seriously. However, natural products have always inspired the development of drugs. Meanwhile, there is evidence that some natural products can also play a certain role in the treatment of ALD. Thus, we reviewed the natural products, extracts and formulations with potential anti-ALD activities by consulting the relevant data in the databases of PubMed, Web of Science and CNKI databases, in order to elucidate the regulated mechanism of these natural products. Sum up, the insights provided in present review will be needed for further exploration of botanical drugs in the development of ALD therapy.


Assuntos
Produtos Biológicos/uso terapêutico , Hepatopatias Alcoólicas/tratamento farmacológico , Animais , Humanos , Hepatopatias Alcoólicas/metabolismo , Medicina Tradicional Chinesa , Óleos Voláteis/uso terapêutico , Fitoterapia , Transdução de Sinais
6.
Cell Signal ; 102: 110550, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464104

RESUMO

Common liver tissue damage is mainly due to the accumulation of toxic aldehydes in lipid peroxidation under oxidative stress. Cumulative toxic aldehydes in the liver can be effectively metabolized by acetaldehyde dehydrogenase 2 (ALDH2), thereby alleviating various liver diseases. Notably, gene mutation of ALDH2 leads to impaired ALDH2 enzyme activity, thus aggravating the progress of liver diseases. However, the relationship and specific mechanism between ALDH2 and liver diseases are not clear. Consequently, the review explains the relationship between ALDH2 and liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). In addition, this review also discusses ALDH2 as a potential therapeutic target for various liver diseases,and focuses on summarizing the regulatory mechanism of ALDH2 in these liver diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial/genética , Neoplasias Hepáticas/genética , Aldeídos
7.
Int J Biol Macromol ; 248: 125811, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467831

RESUMO

Circular RNA (circRNA) has been implicated in liver fibrosis and modulated by multiple elusive molecular mechanisms, while the effects of N6-methyladenosine (m6A) modification on circRNA are still elusive. Herein, we identify circIRF2 from our circRNA sequencing data, which decreased in liver fibrogenesis stage and restored in resolution stage, indicating that dysregulated circIRF2 may be closely associated with liver fibrosis. Gain/loss-of-function analysis was performed to evaluate the effects of circIRF2 on liver fibrosis at both the fibrogenesis and resolution in vivo. Ectopic expression of circIRF2 attenuated liver fibrogenesis and HSCs activation at the fibrogenesis stage, whereas downregulation of circIRF2 impaired mouse liver injury repair and inflammation resolution. Mechanistically, YTHDF2 recognized m6A-modified circIRF2 and diminished circIRF2 stability, partly accounting for the decreased circIRF2 in liver fibrosis. Microarray was applied to investigate miRNAs regulated by circIRF2, our data elucidate cytoplasmic circIRF2 may directly harbor miR-29b-1-5p and competitively relieve its inhibitory effect on FOXO3, inducing FOXO3 nuclear translocation and accumulation. Clinically, circIRF2 downregulation was prevalent in liver fibrosis patients compared with healthy individuals. In summary, our findings offer a novel insight into m6A modification-mediated regulation of circRNA and suggest that circIRF2 may be an exploitable prognostic marker and/or therapeutic target for liver fibrosis.


Assuntos
MicroRNAs , RNA Circular , Camundongos , Animais , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Proteína Forkhead Box O3/genética , Proteínas de Ligação a RNA/metabolismo
8.
Int J Biol Sci ; 17(2): 651-669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613119

RESUMO

Prostate cancer (PC) is the most common carcinoma among men worldwide which results in 26% of leading causes of cancer-related death. However, the ideal and effective molecular marker remains elusive. CircRNA, initially observed in plant-infected viruses and Sendai virus in 1979, is generated from pre-mRNA back-splicing and comes in to play by adequate expression. The differential expression in prostate tissues compared with the control reveals the promising capacity in modulating processes including carcinogenesis and metastasis. However, the biological mechanisms of regulatory network in PC needs to systemically concluded. In this review, we enlightened the comprehensive studies on the definite mechanisms of circRNAs affecting tumor progression and metastasis. What's more, we validated the potential clinical application of circRNAs serving as diagnostic and prognostic biomarker. The discussion and analysis in circRNAs will broaden our knowledge of the pathogenesis of PC and further optimize the current therapies against different condition.


Assuntos
Carcinoma/metabolismo , Neoplasias da Próstata/metabolismo , RNA Circular/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Epigênese Genética , Transição Epitelial-Mesenquimal , Genes Supressores de Tumor , Humanos , Masculino , Oncogenes
9.
Front Pharmacol ; 12: 650425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122073

RESUMO

Inflammasomes are large multimolecular complexes best recognized because of their ability to control activation of caspase-1, which in turn regulates the maturation of interleukin-18 (IL-18) and interleukin-1 ß (IL-1ß). IL-1ß was originally identified as a pro-inflammatory cytokine, capable of inducing local and systemic inflammation as well as a fever response reaction in response to infection or injury. Excessive production of IL-1ß is related to inflammatory and autoimmune diseases. Both coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome (SARS) are characterized by excessive inflammatory response. For SARS, there is no correlation between viral load and worsening symptoms. However, there is no specific medicine which is available to treat the disease. As an important part of medical practice, TCM showed an obvious therapeutic effect in SARS-CoV-infected patients. In this article, we summarize the current applications of TCM in the treatment of COVID-19 patients. Herein, we also offer an insight into the underlying mechanisms of the therapeutic effects of TCM, as well as introduce new naturally occurring compounds with anti-coronavirus activity, in order to provide a new and potential drug development strategy for the treatment of COVID-19.

10.
Int J Biol Sci ; 16(13): 2283-2295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760197

RESUMO

Liver diseases are one of the leading causes of mortality in the world, mainly caused by different etiological agents, alcohol consumption, viruses, drug intoxication, and malnutrition. The maturation of gene therapy has heralded new avenues for developing effective interventions for these diseases. Derived from a remarkable microbial defense system, clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins 9 system (CRISPR/Cas9 system) is driving innovative applications from basic biology to biotechnology and medicine. Recently, the mutagenic function of CRISPR/Cas9 system has been widely adopted for genome and disease research. In this review, we describe the development and applications of CRISPR/Cas9 system on liver diseases for research or translational applications, while highlighting challenges as well as future avenues for innovation.


Assuntos
Terapia Genética/métodos , Hepatopatias/terapia , Animais , Sistemas CRISPR-Cas , Humanos
11.
Life Sci ; 258: 118147, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721464

RESUMO

Alcoholic liver disease (ALD) was a global liver disease which divided into liver inflammation, fatty liver, alcoholic hepatitis or cirrhosis. Abnormal expression levels of some microRNAs (miRNA) family members often lead to ALD and other liver diseases. MicroRNA-708 (miR-708) was known to suppress the proliferation and metastasis of hepatocellular carcinoma (HCC), but its role in the progression of ALD was not clear. In this study, the expression level of miR-708 was down-regulated in ethanol-induced L0-2 cells. ZEB1 could decrease the PPAR-α expression while increase the SREBP-1 expression. Meanwhile, the expression levels of TNF-α and IL-6 were up-regulated by ZEB1. Of note, ZEB1 aggravated the apoptotic rate of L0-2 cells induced by ethanol via inhibiting p-AKT and p-mTOR of AKT/mTOR signaling pathway. What's more, it was demonstrated that miR-708 family members particularly target ZEB1 3'-UTR regions and can down-regulate the expression level of ZEB1 in L0-2 cells. Sum up, these results indicated that miR-708 might inhibit the liver inflammation and lipid accumulation by targeting ZEB1 via regulating AKT/mTOR signaling pathway.


Assuntos
Metabolismo dos Lipídeos , Hepatopatias Alcoólicas/genética , Fígado/metabolismo , MicroRNAs/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Linhagem Celular , Regulação para Baixo , Feminino , Humanos , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Masculino , Pessoa de Meia-Idade , Regulação para Cima
12.
Front Pharmacol ; 11: 569575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584256

RESUMO

It is known that liver diseases have several characteristics of massive lipid accumulation and lipid metabolic disorder, and are divided into liver inflammation, liver fibrosis, liver cirrhosis (LC), and hepatocellular carcinoma (HCC) in patients. Interleukin (IL)-35, a new-discovered cytokine, can protect the liver from the environmental attack by increasing the ratio of Tregs (T regulatory cells) which can increase the anti-inflammatory cytokines and inhibit the proliferation of immune cellular. Interestingly, two opposite mechanisms (pro-inflammatory and anti-inflammatory) have connection with the ultimate formation of liver diseases, which suggest that IL-35 may play crucial function in the process of liver diseases through immunosuppressive regulation. Besides, some obvious advantages also imply that IL-35 can be considered as a new therapeutic target to control the progression of liver diseases, while its mechanism of function still needs further research.

13.
Cell Signal ; 63: 109390, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419576

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally responsible for regulating >70% of human genes. MicroRNA-708 (miR-708) is encoded in the intron 1 of the Odd Oz/ten-m homolog 4 (ODZ4) gene. Numerous researches have confirmed that the abnormal expressed miR-708 is involved in the regulation of multiple types of cancer. Notably, the expression level of miR-708 was higher in lung cancer, bladder cancer (BC) and colorectal cancer (CRC) cell lines while lower in hepatocellular carcinoma (HCC), prostate cancer (PC), gastric cancer (GC) and so on. This review provides a current view on the association between miR-708 and several cancers and focuses on the recent studies of miR-708 regulation, discussing its potential as an epigenetic biomarker and therapeutic target for these cancers. In particular, the regulated mechanisms and clinical application of miR-708 in these cancers are also discussed.


Assuntos
MicroRNAs/fisiologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Humanos
14.
Eur J Pharmacol ; 865: 172787, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712061

RESUMO

Zinc finger E-box binding homeobox 1 (ZEB1) (previously known as TCF8), a transcriptional repressor, is a member of the zinc-finger family of proteins. Numerous studies have demonstrated that abnormal expression of ZEB1 in many types of liver disease including hepatocellular carcinoma (HCC). Liver fibrosis is the basis and central link in the progression of liver disease. Thereby, the function of ZEB1 in liver fibrosis has been investigated. The aim of the present study was to investigate the role of ZEB1 in liver fibrosis and to elucidate the mechanism. In this study, we explored the effect of ZEB1 in hepatic stellate cells (HSCs) activation and the regulatory mechanism of the Wnt/ß-catenin signaling pathway. Additionally, ZEB1 positively regulated the expression levels of α-SMA and Col.I in vivo and in vitro, which were correlated with the activated HSCs. Furthermore, overexpression of ZEB1 could inhibit HSCs apoptosis and promote IL-6 and TNF-α secretion in LX-2 cells. Conversely, ZEB1 silencing led to the promotion of cell proliferation and the reduction of IL-6 and TNF-α secretion in LX-2 cells. Mechanically, canonical Wnt/ß-catenin signaling pathway could be regulated by ZEB1. Collectively, the data suggested that ZEB1 might play a significant role in the activation of LX-2 cells, and Wnt/ß-catenin signaling pathway might participate in this progression.


Assuntos
Células Estreladas do Fígado/metabolismo , Via de Sinalização Wnt , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , beta Catenina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Linhagem Celular , Proliferação de Células , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Toxicol Lett ; 317: 82-91, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639579

RESUMO

Recent studies have shown that Transmembrane protein 100 (TMEM100) is a gene at locus 17q32 encoding a 134-amino acid protein with two hypothetical transmembrane domainsa, and first identified as a transcript from the mouse genome. As a downstream target gene of bone morphogenetic protein (BMP)-activin receptor-like kinase 1 (ALK1) signaling, it was activated to participate in inducing arterial endothelium differentiation, maintaining vascular integrity, promoting cell apoptosis, inhibiting metastasis and proliferation of cancer cells. However, evidence for the function of TMEM100 in inflammation is still limited. In this study, we explore the role of TMEM100 in inflammatory cytokine secretion and the role of MAPK signaling pathways in tumor necrosis factor-alpha (TNF-α)-induced TMEM100 expression in LX-2 cells. We found that the expression of TMEM100 was decreased markedly in human liver fibrosis tissues, and its expression was also inhibited in LX-2 cells induced by TNF-α, suggesting that it might be associated with the development of inflammation. Therefore, we demonstrated that overexpression of TMEM100 by transfecting pEGFP-C2-TMEM100 could lead to the down-regulation of IL-1ß and IL-6 secretion. Moreover, we found that expression changes of TMEM100 could be involved in inhibition or activation of MAPK signaling pathways accompanied with regulating phosphorylation levels of ERK and JNK protein in response to TNF-α. These results suggested that TMEM100 might play an important role in the secretion of inflammatory cytokines (IL-1ß and IL-6) of LX-2 cells induced by TNF-α, and MAPK (ERK and JNK) signaling pathways might participate in its induction of expression.


Assuntos
Citocinas/metabolismo , Células Estreladas do Fígado/metabolismo , Mediadores da Inflamação/metabolismo , Cirrose Hepática/metabolismo , Proteínas de Membrana/metabolismo , Adulto , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Citocinas/genética , Citocinas/imunologia , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/imunologia , Humanos , Mediadores da Inflamação/imunologia , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Via Secretória , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
16.
Gene ; 674: 57-69, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29944952

RESUMO

Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the Wnt signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different interactions with Wnt signaling pathway-regulated liver fibrosis. The Wnt signaling pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the Wnt signaling pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of Wnt signaling pathway activation in liver fibrosis. For example, antagonist to Wnt and Wnt ligands could inhibit liver fibrosis by regulating Wnt/ß-catenin signaling pathway. These findings identify the Wnt signaling pathway as a potentially important for therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective Wnt-based drugs.


Assuntos
Cirrose Hepática/metabolismo , Via de Sinalização Wnt , Doença Crônica , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/terapia , Hepatopatias/metabolismo
18.
Chin Med J (Engl) ; 124(10): 1529-33, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21740811

RESUMO

BACKGROUND: Fenvalerate (FEN) has been demonstrated to be a reproductive toxicant in humans and rodents. However, little is known about whether short-term exposure to low-dose FEN produces reproductive toxicity. METHODS: We administered FEN (0.009 375, 0.1875, 3.750, or 45.00 mg×kg(-1)×d(-1) by gavage for 30 days) to male ICR mice and compared reproductive toxicity parameters between groups receiving different concentrations of FEN. Reproductive toxicity was evaluated by computer-assisted semen quality analysis (CASA), chlortetracycline (CTC) assay, and histopathology. RESULTS: The sperm morphology and testis histology of FEN-exposed mice (all doses) were similar to that in controlling mice. Exposure to FEN at a concentration of 0.1875 mg×kg(-1)×d(-1) decreased sperm path straightness (STR) and linearity (LIN) (both P < 0.05), but had no significant impact on average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), lateral amplitude (ALH), beat cross frequency (BCF), or progressive motility (MOT). FEN reduced the rate of mouse sperm capacitation in a dose-dependent manner. CONCLUSION: The present results demonstrate that exposure to low-dose FEN for 30 days reduces semen quality and sperm capacitation in adult mice.


Assuntos
Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tamanho do Órgão/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA