Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Nanobiotechnology ; 22(1): 142, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561751

RESUMO

Seesaw circuits are essential for molecular computing and biosensing. However, a notable limitation of seesaw circuits lies in the irreversible depletion of components, precluding the attainment of system recovery and rendering nucleic acid circuits non-reusable. We developed a brand-new method for creating controllable and reusable seesaw circuits. By using the nicking endonucleases Nt.BbvCI and Nt.Alwi, we removed "functional components" while keeping the "skeletal components" for recurrent usage. T-inputs were introduced, increasing the signal-to-noise ratio of AND logic from 2.68 to 11.33 and demonstrating compatibility. We identified the logic switching feature and verified that it does not impair circuit performance. We also built intricate logic circuits, such as OR-AND gate, to demonstrate the versatility of our methodology. This controllable reusability extends the applications of nanotechnology and bioengineering, enhancing the practicality and efficiency of these circuits across various domains.


Assuntos
DNA , Ácidos Nucleicos , Endonucleases , Bioengenharia
2.
Opt Lett ; 48(24): 6480-6483, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099778

RESUMO

Bound states in the continuum (BICs) with extremely large quality factors (Q factors) can enhance the light-matter interaction and thus achieve low-threshold lasing. Here, we theoretically propose and experimentally demonstrate the low-threshold lasing at room temperature based on BICs. A threshold of approximately 306.7 W/cm2 (peak intensity) under a 7.5 ns-pulsed optical excitation is presented in an all-dielectric metasurface system consisting of titanium dioxide (TiO2) nanopillars with a dye film. Also, the multimode lasing can be excited by the higher pumping. Our results may find exciting applications in on-chip coherent light sources, filtering, and sensing.

3.
J Colloid Interface Sci ; 663: 880-890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447402

RESUMO

In the vanguard of safeguarding data integrity, optical encryption and anti-counterfeiting measures are indispensable. Structural color, with its inherent optical exclusivity, including tunable chromaticity and intricate high-resolution patterning, stands at the forefront of this domain. Despite its promise, the proliferation of structural color technologies in anti-counterfeiting applications is curtailed by the exorbitant production costs and the current limitations in information capacity and security. Addressing these constraints, our study delineates a novel encryption paradigm that interlaces color and digital data within a subwavelength grating matrix. This synergy is fortified by a tri-layered encryption schema, amalgamating electrical response signatures, inherent optical attributes, and the robust RSA algorithm, thereby elevating the information capacity exponentially to 10n and reinforcing multi-faceted security throughout transmission. Our approach heralds a new era in the realm of high density, secure information storage.

4.
Adv Drug Deliv Rev ; 212: 115387, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964543

RESUMO

Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.

5.
Biosens Bioelectron ; 247: 115936, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38142668

RESUMO

Gene point mutations play a significant role in the development of cancer. Therefore, developing a sensitive, specific, and universally applicable method for detecting gene point mutation is crucial for clinical diagnosis, prognosis, and cancer treatment. Recently, gene point mutation detection methods based on CRISPR/Cas12a detection have emerged. However, existing methods generally lack universality and specificity. In this study, we have developed a CRISPR/Cas12a-based method that combines improved allele-specific polymerase chain reaction and single base extension to translate the point mutation information in the target dsDNA into length information in ssDNA activators to overcome the limitations associated with PAM sequences in the CRISPR/Cas12a system. Our method achieved a detection limit of 0.002% for clinically significant EGFR T790M mutation. The CRISPR/Cas12a system we constructed demonstrates high sensitivity, specificity, and universality in detecting gene point mutations, making it a promising tool for clinical cancer screening.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Humanos , Mutação Puntual , Mutação , Sistemas CRISPR-Cas/genética , Receptores ErbB , Inibidores de Proteínas Quinases
6.
Biosens Bioelectron ; 255: 116203, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531225

RESUMO

DNA nanomaterials have a wide application prospect in biomedical field, among which DNA computers and biosensors based on Seesaw-based DNA circuit is considered to have the most development potential. However, the serious leakage of Seesaw-based DNA circuit prevented its further development and application. Moreover, the existing methods to suppress leakage can't achieve the ideal effect. Interestingly, we found a new source of leakage in Seesaw-based DNA circuit, which we think is the main reason why the previous methods to suppress leakage are not satisfactory. Therefore, based on this discovery, we use DNA triplex to design a new method to suppress the leakage of Seesaw-based DNA circuit. Its ingenious design makes it possible to perfectly suppress the leakage of all sources in Seesaw-based DNA circuit and ensure the normal output of the circuit. Based on this technology, we have constructed basic Seesaw module, AND gate, OR gate, secondary complex circuits and DNA detector. Experimental results show that we can increase the working range of the secondary Seesaw-based DNA circuit by five folds and keep its normal output signal above 90%, and we can improve the LOD of the Seesaw-based DNA detector to 1/11 of the traditional one(1.8pM). More importantly, we successfully developed a detector with adjustable detection range, which can theoretically achieve accurate detection in any concentration range. We believe the established triplex blocking strategy will greatly facilitate the most powerful Seesaw based DNA computers and biosensors, and further promote its application in biological systems.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , DNA/genética , Computadores Moleculares
7.
Adv Sci (Weinh) ; 11(26): e2400011, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38698560

RESUMO

DNA is commonly employed as a substrate for the building of artificial logic networks due to its excellent biocompatibility and programmability. Till now, DNA logic circuits are rapidly evolving to accomplish advanced operations. Nonetheless, nowadays, most DNA circuits remain to be disposable and lack of field programmability and thereby limits their practicability. Herein, inspired by the Configurable Logic Block (CLB), the CLB-based erasable field-programmable DNA circuit that uses clip strands as its operation-controlling signals is presented. It enables users to realize diverse functions with limited hardware. CLB-based basic logic gates (OR and AND) are first constructed and demonstrated their erasability and field programmability. Furthermore, by adding the appropriate operation-controlling strands, multiple rounds of programming are achieved among five different logic operations on a two-layer circuit. Subsequently, a circuit is successfully built to implement two fundamental binary calculators: half-adder and half-subtractor, proving that the design can imitate silicon-based binary circuits. Finally, a comprehensive CLB-based circuit is built that enables multiple rounds of switch among seven different logic operations including half-adding and half-subtracting. Overall, the CLB-based erasable field-programmable circuit immensely enhances their practicability. It is believed that design can be widely used in DNA logic networks due to its efficiency and convenience.


Assuntos
Computadores Moleculares , DNA , Lógica , DNA/genética
8.
Gut Microbes ; 16(1): 2320283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444395

RESUMO

Chronic obstructive pulmonary disease (COPD), a condition primarily linked to oxidative stress, poses significant health burdens worldwide. Recent evidence has shed light on the association between the dysbiosis of gut microbiota and COPD, and their metabolites have emerged as potential modulators of disease progression through the intricate gut-lung axis. Here, we demonstrate the efficacy of oral administration of the probiotic Pediococcus pentosaceus SMM914 (SMM914) in delaying the progression of COPD by attenuating pulmonary oxidative stress. Specially, SMM914 induces a notable shift in the gut microbiota toward a community structure characterized by an augmented abundance of probiotics producing short-chain fatty acids and antioxidant metabolisms. Concurrently, SMM914 synthesizes L-tryptophanamide, 5-hydroxy-L-tryptophan, and 3-sulfino-L-alanine, thereby enhancing the tryptophan-melatonin pathway and elevating 6-hydroxymelatonin and hypotaurine in the lung environment. This modulation amplifies the secretion of endogenous anti-inflammatory factors, diminishes macrophage polarization toward the M1 phenotype, and ultimately mitigates the oxidative stress in mice with COPD. The demonstrated efficacy of the probiotic intervention, specifically with SMM914, not only highlights the modulation of intestine microbiota but also emphasizes the consequential impact on the intricate interplay between the gastrointestinal system and respiratory health.


Assuntos
Microbioma Gastrointestinal , Melatonina , Probióticos , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Antioxidantes , Pediococcus pentosaceus , Melatonina/farmacologia , Triptofano
9.
Med ; 5(6): 603-621.e7, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38608708

RESUMO

BACKGROUND: Sperm selection, a key step in assisted reproductive technology (ART), has long been restrained at the preliminary physical level (morphology or motility); however, subsequent fertilization and embryogenesis are complicated biochemical processes. Such an enormous "gap" poses tough problems for couples dealing with infertility, especially patients with severe/total asthenozoospermia . METHODS: We developed a biochemical-level, automatic-screening/separation, smart droplet-TO-hydrogel chip (BLASTO-chip) for sperm selection. The droplet can sense the pH change caused by sperm's respiration products and then transforms into a hydrogel to be selected out. FINDINGS: The BLASTO-chip system can select biochemically active sperm with an accuracy of over 90%, and its selection efficiency can be flexibly tuned by nearly 10-fold. All the substances in the system were proven to be biosafe via evaluating mice fertilization and offspring health. Live sperm down to 1% could be enriched by over 76-fold to 76%. For clinical application to patients with severe/total asthenozoospermia, the BLASTO-chip could select live sperm from human semen samples containing 10% live but 100% immotile sperm. The rates of fertilization, cleavage, early embryos, and blastocysts were drastically elevated from 15% to 70.83%, 10% to 62.5%, 5% to 37.5%, and 0% to 16.67%, respectively. CONCLUSIONS: The BLASTO-chip represents a real biochemical-level technology for sperm selection that is completely independent of sperm's motility. It can be a powerful tool in ART, especially for patients with severe/total asthenozoospermia. FUNDING: This work was funded by the Ministry of Science and Technology of China, the Ministry of Education of China, and the Shenzhen-Hong Kong Hetao Cooperation Zone.


Assuntos
Astenozoospermia , Espermatozoides , Masculino , Humanos , Espermatozoides/metabolismo , Espermatozoides/química , Animais , Camundongos , Astenozoospermia/metabolismo , Astenozoospermia/diagnóstico , Motilidade dos Espermatozoides , Dispositivos Lab-On-A-Chip , Feminino , Técnicas de Reprodução Assistida
10.
Commun Med (Lond) ; 4(1): 84, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724730

RESUMO

BACKGROUND: Artificial Intelligence(AI)-based solutions for Gleason grading hold promise for pathologists, while image quality inconsistency, continuous data integration needs, and limited generalizability hinder their adoption and scalability. METHODS: We present a comprehensive digital pathology workflow for AI-assisted Gleason grading. It incorporates A!MagQC (image quality control), A!HistoClouds (cloud-based annotation), Pathologist-AI Interaction (PAI) for continuous model improvement, Trained on Akoya-scanned images only, the model utilizes color augmentation and image appearance migration to address scanner variations. We evaluate it on Whole Slide Images (WSI) from another five scanners and conduct validations with pathologists to assess AI efficacy and PAI. RESULTS: Our model achieves an average F1 score of 0.80 on annotations and 0.71 Quadratic Weighted Kappa on WSIs for Akoya-scanned images. Applying our generalization solution increases the average F1 score for Gleason pattern detection from 0.73 to 0.88 on images from other scanners. The model accelerates Gleason scoring time by 43% while maintaining accuracy. Additionally, PAI improve annotation efficiency by 2.5 times and led to further improvements in model performance. CONCLUSIONS: This pipeline represents a notable advancement in AI-assisted Gleason grading for improved consistency, accuracy, and efficiency. Unlike previous methods limited by scanner specificity, our model achieves outstanding performance across diverse scanners. This improvement paves the way for its seamless integration into clinical workflows.


Gleason grading is a well-accepted diagnostic standard to assess the severity of prostate cancer in patients' tissue samples, based on how abnormal the cells in their prostate tumor look under a microscope. This process can be complex and time-consuming. We explore how artificial intelligence (AI) can help pathologists perform Gleason grading more efficiently and consistently. We build an AI-based system which automatically checks image quality, standardizes the appearance of images from different equipment, learns from pathologists' feedback, and constantly improves model performance. Testing shows that our approach achieves consistent results across different equipment and improves efficiency of the grading process. With further testing and implementation in the clinic, our approach could potentially improve prostate cancer diagnosis and management.

11.
Front Pharmacol ; 14: 1240829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125893

RESUMO

Introduction: Pulmonary fibrosis (PF) is a fatal chronic lung disease that causes structural damage and decreased lung function and has a poor prognosis. Currently, there is no medicine that can truly cure PF. Vitamin E (VE) is a group of natural antioxidants with anticancer and antimutagenic properties. There have been a few reports about the attenuation of PF by VE in experimental animals, but the molecular mechanisms are not fully understood. Methods: Bleomycin-induced PF (BLM-PF) mouse model, and cultured mouse primary lung fibroblasts and MLE 12 cells were utilized. Pathological examination of lung sections, immunoblotting, immunofluorescent staining, and real-time PCR were conducted in this study. Results: We confirmed that VE significantly delayed the progression of BLM-PF and increased the survival rates of experimental mice with PF. VE suppressed the pathological activation and fibrotic differentiation of lung fibroblasts and epithelial-mesenchymal transition and alleviated the inflammatory response in BLM-induced fibrotic lungs and pulmonary epithelial cells in vitro. Importantly, VE reduced BLM-induced ferritin expression in fibrotic lungs, whereas VE did not exhibit iron chelation properties in fibroblasts or epithelial cells in vitro. Furthermore, VE protected against mitochondrial dysmorphology and normalized mitochondrial protein expression in BLM-PF lungs. Consistently, VE suppressed apoptosis in BLM-PF lungs and pulmonary epithelial cells in vitro. Discussion: Collectively, VE markedly inhibited BLM-induced PF through a complex mechanism, including improving iron metabolism and mitochondrial structure and function, mitigating inflammation, and decreasing the fibrotic functions of fibroblasts and epithelial cells. Therefore, VE presents a highly potential therapeutic against PF due to its multiple protective effects with few side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA