Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem ; 459: 140354, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39003863

RESUMO

A novel superparamagnetic photonic crystal DNA probe (Fe3O4@SiO2@amino@DNA SPC) was developed to enable rapid visual detection of Hg2+. This unique photonic crystal (PC) was synthesized by combining superparamagnetic nanospheres with DNA probes. The DNA probe, rich in thymine (T), detects mercury ions through base mismatch, resulting in the formation of T-Hg2+-T loop hairpin structures. With the binding of Hg2+ to the probe attached to superparamagnetic nanospheres, the PC structure assembled by these nanospheres, formed by the magnetic field, was changed. This change enhanced the reflection intensity; it could be quantified using a fiber optic spectrometer and was visible to the naked eye. The Fe3O4@SiO2@amino@DNA SPC, specific to Hg2+, exhibited a reflection peak at 679 nm, which intensified with increasing Hg2+ concentration. The reflection intensity increased by 132.58 a.u., and the PC color shifted from red to yellow as the Hg2+ concentration increased from 0.1 µg/L to 1 mg/L.


Assuntos
Sondas de DNA , Mercúrio , Mercúrio/análise , Mercúrio/química , Sondas de DNA/química , Nanopartículas de Magnetita/química , Fótons , Colorimetria/métodos
2.
Talanta ; 270: 125551, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103284

RESUMO

DNA aptamer superparamagnetic photonic crystals (DSPCs), enriched with a highly selective cytosine-rich mismatched single-stranded DNA aptamer (CRDA), were successfully employed in a novel visual detection strategy for the detection of silver ions (Ag+). The technologies of superparamagnetic colloidal nanospheres (SCNs), DNA aptamer, and photonic crystals were combined to fabricate DPSCs. The aptamer was immobilized via electrostatic adsorption with amino groups that were chemically introduced on the surface of the SCNs, forming D-NH-SCNs. The detection is achieved by forming an Ag+ complex (C-Ag+-C) between Ag+ and D-NH-SCN. The DSPCs assembled under a magnetic field by D-NH-SCNs effectively detected Ag+ in the range of 1 µg/L to 5 mg/L, corresponding to the critical concentration range for heavy metals in drinking water. During the detection, the DSPC exhibited a wavelength blueshift from 652.8 nm to 626.4 nm (26.4 nm), as well as changes in reflection intensity. Notably, when detecting Ag+, a change in DSPC color from orange to yellow was observed. In summary, the developed visual detection material facilitates direct Ag + sensing. In the future, different DNA aptamers will be modified further to detect various targets in the fields of medicine, environmental monitoring, and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Prata/química , Aptâmeros de Nucleotídeos/química , Citosina/química , Íons , Nanopartículas Magnéticas de Óxido de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA