Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transplant Proc ; 52(10): 2947-2954, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33131902

RESUMO

The NLR family pyrin domain containing 3 (NLRP3) inflammasome is a widely studied inflammasome that plays a critical role in inflammatory responses. Many triggers, including microbial pathogens (ie, bacteria and viruses) and other signals (ie, reactive oxygen species, adenosine triphosphate, urate, silicon, and asbestos), can stimulate the NLRP3 inflammasome. Liver ischemia/reperfusion (I/R) injury is a common pathologic process during liver surgery and shock and can induce severe liver damage. Although its pathogenesis is still unclear, oxidative stress and overproduction of the inflammatory response are likely to contribute to I/R injury. The NLRP3 inflammasome is activated during the I/R process, resulting in further recruitment and activation of caspase-1. Activated caspase-1 cleaves the pro-forms of interleukin-1ß and interleukin-18 and results in their maturation, triggering a proinflammatory cytokine cascade and causing liver damage. Bruton's tyrosine kinase is a critical molecule involved in diverse cellular pathways, such as proliferation, apoptosis, inflammation, and angiogenesis. Intrahepatic Bruton's tyrosine kinase is mainly expressed on Kupffer cells and sinusoidal endothelial cells, and the inflammasome is activated in Kupffer cells. Our study found that inhibition of Bruton's tyrosine kinase effectively attenuated liver I/R injury by suppressing activation of the NLRP3 inflammasome in Kupffer cells.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inflamassomos/metabolismo , Fígado/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piperidinas/farmacologia , Traumatismo por Reperfusão/metabolismo , Adenina/farmacologia , Animais , Inflamassomos/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
2.
Medicines (Basel) ; 4(1)2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28930217

RESUMO

Background: The chemical composition and bioactivities of essential oils (EOs) of fingered citron (Citrus medica L. var. sarcodactylis (Noot.) Swingle) are considerably sensitive and lapsible during high-temperature processing of traditional separating techniques. In the present research, vacuum distillation and ultrafiltration were utilized in order to process the concentrated juice from fingered citron, obtaining a high-quality essential oil. Methods: In order to compare the essential oils obtained by conventional means, the chemical compositions of the essential oils were analyzed using GC-MS, before antimicrobial and antioxidant screening assays were carried out. Results: Oil which had been subjected to vacuum distillation was shown to maintain most of the distinctiveness of the fingered citron, due to its high content of characteristic flavor components and low content of cyclic oxygenated monoterpenoids. Interestingly, the oil obtained by ultrafiltration showed notable in vitro antimicrobial activity. The DPPH· radical-scavenging assay method revealed that the antioxidant abilities were as follows, presented in descending order: vacuum distillation oil > hydrodistillation oil > ultrafiltration oil. Conclusions: The essential oil obtained by vacuum distillation could be combined with the juice produced from fingered citron to create one of the most promising techniques in the fine-processing of citron fruits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA