Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(14): 5799-5809, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36974005

RESUMO

The capture of the radionuclides strontium and cesium is of great importance to the environment, human health, and the sustainable development of nuclear energy, and zirconium phosphate with excellent ion exchange capacity has potential application in this field. In this work, we organically granulated zirconium phosphate to induce the formation of composite bead materials (CA@ZrP) with a calcium-containing phase with selectivity for Sr2+ and Cs+ higher than that of pure ZrP in low-pH environments and competing ionic environments. The adsorption performance of the material was systematically investigated. It was concluded that the adsorption performance of CA@ZrP improved with an increase in temperature, and under the dynamic adsorption experimental conditions, the treatment capacity of CA@ZrP for Sr2+ and Cs+ reached 404.79 and 302.2 bed volumes, respectively. The systematic study and characterization showed that the generation of the calcium-containing phase [Ca0.55ZrH0.9(PO4)2] promoted the exchange of Ca2+ with Sr2+ and Cs+, thus improving the selectivity of the composite beads. The highly selective composite bead material can be prepared in batches and easily recycled, providing a new idea for practical engineering applications.

2.
Front Immunol ; 14: 1126997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960061

RESUMO

Background: Epicardial adipose tissue (EAT) acts as an active immune organ and plays a critical role in the pathogenesis of heart failure (HF). However, the characteristics of immune cells in EAT of HF patients have rarely been elucidated. Methods: To identify key immune cells in EAT, an integrated bioinformatics analysis was performed on public datasets. EAT samples with paired subcutaneous adipose tissue (SAT), heart, and peripheral blood samples from HF patients were collected in validation experiments. T cell receptor (TCR) repertoire was assessed by high-throughput sequencing. The phenotypic characteristics and key effector molecules of T lymphocytes in EAT were assessed by flow cytometry and histological staining. Results: Compared with SAT, EAT was enriched for immune activation-related genes and T lymphocytes. Compared with EAT from the controls, activation of T lymphocytes was more pronounced in EAT from HF patients. T lymphocytes in EAT of HF patients were enriched by highly expanded clonotypes and had greater TCR clonotype sharing with cardiac tissue relative to SAT. Experiments confirmed the abundance of IFN-γ+ effector memory T lymphocytes (TEM) in EAT of HF patients. CCL5 and GZMK were confirmed to be associated with T lymphocytes in EAT of HF patients. Conclusion: EAT of HF patients was characterized by pronounced immune activation of clonally expanded IFN-γ+ TEM and a generally higher degree of TCR clonotypes sharing with paired cardiac tissue.


Assuntos
Tecido Adiposo , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/patologia , Gordura Subcutânea , Pericárdio/patologia , Receptores de Antígenos de Linfócitos T
3.
Front Mol Biosci ; 9: 1004036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225258

RESUMO

The spike (S) glycoprotein of SARS-CoV-2 mediates viral entry through associating with ACE2 on host cells. Intracellular trafficking and palmitoylation of S protein are required for its function. The short cytoplasmic tail of S protein plays a key role in the intracellular trafficking, which contains the binding site for the host trafficking proteins such as COPI, COPII and SNX27. This cytoplasmic tail also contains the palmitoylation sites of S protein. Protein palmitoylation modification of S protein could be catalyzed by a family of zinc finger DHHC domain-containing protein palmitoyltransferases (ZDHHCs). The intracellular trafficking and membrane location facilitate surface expression of S protein and assembly of progeny virions. In this review, we summarize the function of S protein cytoplasmic tail in transportation and localization. S protein relies on intracellular trafficking pathways and palmitoylation modification to facilitate the life cycle of SARS-CoV-2, meanwhile it could interfere with the host transport pathways. The interplay between S protein and intracellular trafficking proteins could partially explain the acute symptoms or Long-COVID complications in multiple organs of COVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA