Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 84(1): 201-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846514

RESUMO

The entry of human immunodeficiency virus type 1 (HIV-1) into a target cell entails a series of conformational changes in the gp41 transmembrane glycoprotein that mediates the fusion of the viral and target cell membranes. A trimer-of-hairpins structure formed by the association of two heptad repeat (HR) regions of the gp41 ectodomain has been implicated in a late step of the fusion pathway. Earlier native and intermediate states of the protein are postulated to mediate the antiviral activity of the fusion inhibitor enfuvirtide and of broadly neutralizing monoclonal antibodies (NAbs), but the details of these structures remain unknown. Here, we report the identification and crystal structure of a dimerization domain in the C-terminal ectodomain of gp41 (residues 630 to 683, or C54). Two C54 monomers associate to form an asymmetric, antiparallel coiled coil with two distinct C-terminal alpha-helical overhangs. This dimer structure is conferred largely by interactions within a central core that corresponds to the sequence of enfuvirtide. The mutagenic alteration of the dimer interface severely impairs the infectivity of Env-pseudotyped viruses. Moreover, the C54 structure binds tightly to both the 2F5 and 4E10 NAbs and likely represents a potential intermediate conformation of gp41. These results should enhance our understanding of the molecular basis of the gp41 fusogenic structural transitions and thereby guide rational, structure-based efforts to design new fusion inhibitors and vaccine candidates intended to induce broadly neutralizing antibodies.


Assuntos
Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/fisiologia , HIV-1/patogenicidade , Internalização do Vírus , Anticorpos Monoclonais/imunologia , Cristalografia por Raios X , Enfuvirtida , Proteína gp41 do Envelope de HIV/imunologia , Inibidores da Fusão de HIV/química , Humanos , Fusão de Membrana , Mutagênese , Fragmentos de Peptídeos/química , Conformação Proteica , Multimerização Proteica
2.
J Virol ; 84(12): 6119-29, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20392854

RESUMO

The arenavirus envelope glycoprotein (GPC) initiates infection in the host cell through pH-induced fusion of the viral and endosomal membranes. As in other class I viral fusion proteins, this process proceeds through a structural reorganization in GPC in which the ectodomain of the transmembrane fusion subunit (G2) engages the host cell membrane and subsequently refolds to form a highly stable six-helix bundle structure that brings the two membranes into apposition for fusion. Here, we describe a G2-directed monoclonal antibody, F100G5, that prevents membrane fusion by binding to an intermediate form of the protein on the fusion pathway. Inhibition of syncytium formation requires that F100G5 be present concomitant with exposure of GPC to acidic pH. We show that F100G5 recognizes neither the six-helix bundle nor the larger trimer-of-hairpins structure in the postfusion form of G2. Rather, Western blot analysis using recombinant proteins and a panel of alanine-scanning GPC mutants revealed that F100G5 binding is dependent on an invariant lysine residue (K283) near the N terminus of G2, in the so-called fusion peptide that inserts into the host cell membrane during the fusion process. The F100G5 epitope is located in the internal segment of the bipartite GPC fusion peptide, which also contains four conserved cysteine residues, raising the possibility that this fusion peptide may be highly structured. Collectively, our studies indicate that F100G5 identifies an on-path intermediate form of GPC. Binding to the transiently exposed fusion peptide may interfere with G2 insertion into the host cell membrane. Strategies to effectively target fusion peptide function in the endosome may lead to novel classes of antiviral agents.


Assuntos
Anticorpos/farmacologia , Glicoproteínas/imunologia , Vírus Junin/fisiologia , Fusão de Membrana/efeitos dos fármacos , Proteínas Virais de Fusão/imunologia , Sequência de Aminoácidos , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Chlorocebus aethiops , Glicoproteínas/química , Glicoproteínas/genética , Concentração de Íons de Hidrogênio , Vírus Junin/química , Vírus Junin/efeitos dos fármacos , Vírus Junin/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
3.
Chem Biol ; 15(9): 908-19, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18804028

RESUMO

Protein-protein interactions play an essential role in the assembly of the macromolecular complexes that form functional networks and control cellular behavior. Elucidating principles of molecular recognition governing potentially complex interfaces is a challenging goal for structural and systems biology. Extensive studies of alpha-helical coiled coils have provided fundamental insight into the determinants of one seemingly tractable class of oligomeric protein interfaces. We report here that two different valine-containing mutants of the GCN4 leucine zipper that fold individually as four-stranded coiled coils associate preferentially in mixtures to form an antiparallel, heterotetrameric structure. X-ray crystallographic analysis reveals that the coinciding hydrophobic interfaces of the hetero- and homotetramers differ in detail, thereby controlling their partnering and structural specificity. Equilibrium disulfide exchange and thermal denaturation experiments show that the 50-fold preference for heterospecificity is determined by interfacial van der Waals interactions and hydrophobicity. Parallel studies of two alanine-containing variants confirm the above-mentioned interpretation of the basis and mechanism of this heterospecificity. Our results suggest that coiled-coil recognition is an inherently geometric process in which heterotypic interaction specificity derives from a complementarity of both shape and chemistry.


Assuntos
Zíper de Leucina , Sequência de Aminoácidos , Dicroísmo Circular , Modelos Moleculares , Peptídeos/química , Estrutura Terciária de Proteína , Especificidade por Substrato , Difração de Raios X
4.
Biochemistry ; 46(51): 14951-9, 2007 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-18052214

RESUMO

Predictive understanding of how the folded, functional shape of a native protein is encoded in the linear sequence of its amino acid residues remains an unsolved challenge in modern structural biology. Antiparallel four-stranded coiled coils are relatively simple protein structures that embody a heptad sequence repeat and rich diversity for tertiary packing of alpha-helices. To explore specific sequence determinants of the lac repressor coiled-coil tetramerization domain, we have engineered a set of buried nonpolar side chains at the a-, d-, and e-positions into the hydrophobic interior of the dimeric GCN4 leucine zipper. Circular dichroism and equilibrium ultracentrifugation studies show that this core variant (GCN4-pAeLV) forms a stable tetrameric structure with a reversible and highly cooperative thermal unfolding transition. The X-ray crystal structure at 1.9 A reveals that GCN4-pAeLV is an antiparallel four-stranded coiled coil of the lac repressor type in which the a, d, and e side chains associate by means of combined knobs-against-knobs and knobs-into-holes packing with a characteristic interhelical offset of 0.25 heptad. Comparison of the side chain shape and packing in the antiparallel tetramers shows that the burial of alanine residues at the e positions between the neighboring helices of GCN4-pAeLV dictates both the antiparallel orientation and helix offset. This study fills in a gap in our knowledge of the determinants of structural specificity in antiparallel coiled coils and improves our understanding of how specific side chain packing forms the teritiary structure of a functional protein.


Assuntos
Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Ligação Proteica , Engenharia de Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA