Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Cell Mol Med ; 28(17): e70053, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39224032

RESUMO

MitoAMPK was proved to inhibit the Warburg effect, but the specific mechanisms on non-small-cell lung cancer remain unclear. Here, we selected SIRT6 and MZF1 to clarify the mechanism. By western blotting, quantitative polymerase chain reaction, the CCK-8 assay, and immunohistochemistry assays, we found SIRT6 expression was lower in NSCLC tissues and cell lines than normal tissues and cells. Moreover, SIRT6 could inhibit the Warburg effect by regulating glycolysis-related genes of SLC2A2, SLC2A4 and PKM2. Finally, we demonstrated the interaction between SIRT6 and MZF1 using ChIP-qPCR. In conclusion, mitoAMPK inhibits the Warburg effect by regulating the expression of the MZF1-SIRT6 complex.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like , Neoplasias Pulmonares , Sirtuínas , Efeito Warburg em Oncologia , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Linhagem Celular Tumoral , Glicólise/genética , Feminino , Masculino
2.
Angew Chem Int Ed Engl ; 63(44): e202411156, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39136344

RESUMO

A reagent-controlled diastereodivergent copper-catalyzed borylative difunctionalization is reported. The formation of Lewis adducts that guide selectivity is commonly invoked in organic reaction mechanisms. Using density functional theory calculations, we identified BpinBdan as a sterically similar and less Lewis acidic alternative to B2pin2. Using a newly developed borylative aldol domino reaction as the proof-of-concept, we demonstrate a change in stereochemical outcome by a simple change of borylating reagent-B2pin2 affords the diastereomer associated with coordination control while BpinBdan overturns this mode of binding. We show that this strategy can be generalized to other scaffolds and, more importantly, that BpinBdan does not alter the diastereomeric outcome of the reaction when coordination is not involved. BpinBdan can be viewed as a mechanistic probe for coordination in future copper-catalyzed borylation reactions.

3.
Opt Express ; 31(17): 27223-27238, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710802

RESUMO

Micro-computed tomography (Micro-CT) is inevitably required to inspect long large objects with high resolution. It is well known that helical CT solves the so-called "long object" problem, but it requires that the measured object be strictly located in the lateral field of view (FOV). Therefore, developing a novel scanning method to extend the FOV in both the lateral and axial directions (i.e., the large helical FOV) is necessary. Recently, due to the application of linearly distributed source arrays and the characteristics of easy extension of the FOV and engineering implementation, straight-line scanning systems have attracted much attention. In this paper, we propose a segmented helical computed tomography (SHCT) based on multiple slant source-translation. SHCT can readily extend the helical FOV by adjusting the source slant translation (SST) length, pitch (or elevation of the SST trajectory), and number of scanning circles. In SHCT, each projection view is truncated laterally and axially, but the projection data set within the cylindrical FOV region is complete. To ensure reconstruction efficiency and avoid the lateral truncation, we propose a generalized backprojection-filtration (G-BPF) algorithm for SHCT approximate reconstruction. Experimental results verify the effectiveness of the proposed SHCT methods for imaging large and long objects. As the pitch decreases, the proposed SHCT methods can reconstruct competitive, high-quality volumes.

4.
Biomacromolecules ; 24(3): 1173-1183, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36580573

RESUMO

Applications of polymer hydrogels in separation technologies, environmental remediation, and drug delivery require control of hydrogel transport properties that are largely governed by the pore dimensions. Stimulus-responsive change in pore size offers the capability to change gel's transport properties "on demand". Here, we report a nanocolloidal hydrogel that exhibits temperature-controlled increase in pore size and, as a result, enhanced transport of encapsulated species from the gel. The hydrogel was formed by the covalent cross-linking of aldehyde-modified cellulose nanocrystals and chitosan carrying end-grafted poly(N-isopropylacrylamide) (pNIPAm) molecules. Owing to the temperature-mediated coil-to-globule transition of pNIPAm grafts, they acted as a temperature-responsive "gate" in the hydrogel. At elevated temperature, the size of the pores showed up to a 4-fold increase, with no significant changes in volume, in contrast with conventional pNIPAm-derived gels exhibiting a reduction in both pore size and volume in similar conditions. Temperature-mediated transport properties of the gel were explored by studying diffusion of nanoparticles with different dimensions from the gel, leading to the established correlation between the kinetics of diffusion-governed nanoparticle release and the ratio nanoparticle dimensions-to-pore size. The proposed approach to stimulus-responsive control of hydrogel transport properties has many applications, including their use in nanomedicine and tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Hidrogéis/química , Polímeros , Nanomedicina , Temperatura
5.
J Am Chem Soc ; 143(17): 6482-6490, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891414

RESUMO

In hydrogen production, the anodic oxygen evolution reaction (OER) limits the energy conversion efficiency and also impacts stability in proton-exchange membrane water electrolyzers. Widely used Ir-based catalysts suffer from insufficient activity, while more active Ru-based catalysts tend to dissolve under OER conditions. This has been associated with the participation of lattice oxygen (lattice oxygen oxidation mechanism (LOM)), which may lead to the collapse of the crystal structure and accelerate the leaching of active Ru species, leading to low operating stability. Here we develop Sr-Ru-Ir ternary oxide electrocatalysts that achieve high OER activity and stability in acidic electrolyte. The catalysts achieve an overpotential of 190 mV at 10 mA cm-2 and the overpotential remains below 225 mV following 1,500 h of operation. X-ray absorption spectroscopy and 18O isotope-labeled online mass spectroscopy studies reveal that the participation of lattice oxygen during OER was suppressed by interactions in the Ru-O-Ir local structure, offering a picture of how stability was improved. The electronic structure of active Ru sites was modulated by Sr and Ir, optimizing the binding energetics of OER oxo-intermediates.

6.
Angew Chem Int Ed Engl ; 60(19): 10577-10582, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33629447

RESUMO

In electrochemical energy storage and conversion systems, the anodic oxygen evolution reaction (OER) accounts for a large proportion of the energy consumption. The electrocatalytic urea oxidation reaction (UOR) is one of the promising alternatives to OER, owing to its low thermodynamic potential. However, owing to the sluggish UOR kinetics, its potential in practical use has not been unlocked. Herein, we developed a tungsten-doped nickel catalyst (Ni-WOx ) with superior activity towards UOR. The Ni-WOx catalyst exhibited record fast reaction kinetics (440 mA cm-2 at 1.6 V versus reversible hydrogen electrode) and a high turnover frequency of 0.11 s-1 , which is 4.8 times higher than that without W dopants. In further experiments, we found that the W dopant regulated the local charge distribution of Ni atoms, leading to the formation of Ni3+ sites with superior activity and thus accelerating the interfacial catalytic reaction. Moreover, when we integrated Ni-WOx into a CO2 flow electrolyzer, the cell voltage is reduced to 2.16 V accompanying with ≈98 % Faradaic efficiency towards carbon monoxide.

7.
Adv Mater ; 36(7): e2308606, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816121

RESUMO

Polymer solar cells (PSCs) are promising for efficient solar energy conversion, but achieving high efficiency and device longevity within a bulk-heterojunction (BHJ) structure remains a challenge. Traditional small-molecule acceptors (SMAs) in the BHJ blend show thermodynamic instability affecting the morphology. In contrast, tethered SMAs exhibit higher glass transition temperatures, mitigating these concerns. Yet, they might not integrate well with polymer donors, causing pronounced phase separation and overpurification of mixed domains. Herein, a novel ternary device is introduced that uses DY-P2EH, a tethered dimeric SMA with conjugated side-chains as host acceptor, and BTP-ec9, a monomeric SMA as secondary acceptor, which respectively possess hypomiscibility and hypermiscibility with the polymer donor PM6. This unique combination affords a parallel-connected ternary BHJ blend, leading to a hierarchical and stable morphology. The ternary device achieves a remarkable fill factor of 80.61% and an impressive power conversion efficiency of 19.09%. Furthermore, the ternary device exhibits exceptional stability, retaining over 85% of its initial efficiency even after enduring 1100 h of thermal stress at 85 °C. These findings highlight the potential advantage of tethered SMAs in the design of ternary devices with a refined hierarchical structure for more efficient and durable solar energy conversion technologies.

8.
Adv Sci (Weinh) ; 11(11): e2305867, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161226

RESUMO

Mechanical forces, including flow shear stress, govern fundamental cellular processes by modulating nucleocytoplasmic transport of transcription factors like Yes-associated Protein (YAP). However, the underlying mechanical mechanism remains elusive. In this study, it is reported that unidirectional flow induces biphasic YAP transport with initial nuclear import, followed by nuclear export as actin cap formation and nuclear stiffening. Conversely, pathological oscillatory flow induces slight actin cap formation, nuclear softening, and sustained YAP nuclear localization. To elucidate the disparately YAP spatiotemporal distribution, a 3D mechanochemical model is developed, which integrates flow sensing, cytoskeleton organization, nucleus mechanotransduction, and YAP transport. The results unveiled that despite the significant localized nuclear stress imposed by the actin cap, its inherent stiffness counteracts the dispersed contractile stress exerted by conventional fibers on the nuclear membrane. Moreover, alterations in nuclear stiffness synergistically regulate nuclear deformation, thereby governing YAP transport. Furthermore, by expanding the single-cell model to a collective vertex framework, it is revealed that the irregularities in actin cap formation within individual cells have the potential to induce topological defects and spatially heterogeneous YAP distribution in the cellular monolayer. This work unveils a unified mechanism of flow-induced nucleocytoplasmic transport, providing a linkage between transcription factor localization and mechanical stimulation.


Assuntos
Actinas , Núcleo Celular , Transporte Ativo do Núcleo Celular , Actinas/metabolismo , Núcleo Celular/metabolismo , Mecanotransdução Celular , Fatores de Transcrição/metabolismo
9.
Science ; 384(6697): eadk9227, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753786

RESUMO

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

10.
Nanoscale ; 15(35): 14531-14542, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37609883

RESUMO

Chronic wounds exhibit over-expression of cell-free deoxyribonucleic acid (cfDNA), leading to a prolonged inflammation and non-healing wounds. Scavenging excessive cfDNA molecules is a promising strategy for chronic wound treatment. Nanoscopic particles act as efficient cfDNA scavengers due to their large surface area, however their efficiency in cfDNA uptake was limited by adsorption solely on the nanoparticle surface. In contrast, nanogels may provide multiple cfDNA binding sites in the nanoparticle interior, however their use for cfDNA scavenging is yet to be explored. Herein, we report cationic nanogels derived from a copolymer of chitosan and poly{2-[(acryloyloxy)ethyl]trimethylammonium chloride} end-grafted to the chitosan backbone as side chains. The nanogels retain their positive charge at the pH and ionic strength of chronic wound exudate, enabling electrostatically driven cfDNA scavenging. The network structure of the nanogels leads to the cfDNA sequestration in the nanogel interior, in addition to surface attachment. A key factor in cfDNA sequestration is the ratio of the pore size of the nanogel-to-cfDNA molecular dimensions. The enhanced cfDNA scavenging efficiency, along with biocompatibility of the nanogels, makes them a promising component of dressings for chronic wound treatment.


Assuntos
Ácidos Nucleicos Livres , Quitosana , Nanopartículas , Nanogéis
11.
Micromachines (Basel) ; 14(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36985086

RESUMO

Flow cytometry is a widespread and powerful technique whose resolution is determined by its capacity to accurately distinguish fluorescently positive populations from negative ones. However, most informative results are discarded while performing the measurements of conventional flow cytometry, e.g., the cell size, shape, morphology, and distribution or location of labeled exosomes within the unpurified biological samples. Herein, we propose a novel approach using an anti-diffraction light sheet with anisotroic feature to excite fluorescent tags. Constituted by an anti-diffraction Bessel-Gaussian beam array, the light sheet is 12 µm wide, 12 µm high, and has a thickness of ~0.8 µm. The intensity profile of the excited fluorescent signal can, therefore, reflect the size and allow samples in the range from O (100 nm) to 10 µm (e.g., blood cells) to be transported via hydrodynamic focusing in a microfluidic chip. The sampling rate is 500 kHz, which provides a capability of high throughput without sacrificing the spatial resolution. Consequently, the proposed anti-diffraction light sheet flow cytometry (ADLSFC) can obtain more informative results than the conventional methodologies, and is able to provide multiple characteristics (e.g., the size and distribution of fluorescent signal) helping to distinguish the target samples from the complex backgrounds.

12.
Nat Commun ; 14(1): 2926, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217503

RESUMO

With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-α with a 2, 5-substitution and TDY-ß with 3, 4-substitution on the core. It shows that TDY-α processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-ß, and a more stable morphology with the polymer donor. As a result, the TDY-α based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.

13.
Adv Mater ; 35(2): e2206563, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36394108

RESUMO

For polymer solar cells (PSCs), the mixture of polymer donors and small-molecule acceptors (SMAs) is fine-tuned to realize a favorable kinetically trapped morphology and thus a commercially viable device efficiency. However, the thermodynamic relaxation of the mixed domains within the blend raises concerns related to the long-term operational stability of the devices, especially in the record-holding Y-series SMAs. Here, a new class of dimeric Y6-based SMAs tethered with differential flexible spacers is reported to regulate their aggregation and relaxation behavior. In their polymer blends with PM6, it is found that they favor an improved structural order relative to that of Y6 counterpart. Most importantly, the tethered SMAs show large glass transition temperatures to suppress the thermodynamic relaxation in mixed domains. For the high-performing dimeric blend, an unprecedented open circuit voltage of 0.87 V is realized with a conversion efficiency of 17.85%, while those of regular Y6-base devices only reach 0.84 V and 16.93%, respectively. Most importantly, the dimer-based device possesses substantially reduced burn-in efficiency loss, retaining more than 80% of the initial efficiency after operating at the maximum power point under continuous illumination for 700 h. The tethering approach provides a new direction to develop PSCs with high efficiency and excellent operating stability.

14.
Nat Commun ; 13(1): 3687, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760969

RESUMO

The acceptor-donor-acceptor (A-D-A) or A-DA'D-A structured small molecule acceptors (SMAs) have triggered substantial progress for polymer solar cells (PSCs). However, the high-cost of the SMAs impedes the commercial viability of such renewable energy, as their synthesis via the classical pyridine-catalyzed Knoevenagel condensation usually suffers from low reaction efficiency and tedious purifying work-up. Herein, we developed a simple and cheap boron trifluoride etherate-catalyzed Knoevenagel condensation for addressing this challenge, and found that the coupling of the aldehyde-terminated D unit and the A-end groups could be quantitatively finished in the presence of acetic anhydride within 15 minutes at room temperature. Compared with the conventional method, the high reaction efficiency of our method is related to the germinal diacetate pathway that is thermodynamically favorable to give the final products. For those high performing SMAs (such as ITIC-4F and Y6), the cost could be reduced by 50% compared with conventional preparation. In addition to the application in PSCs, our synthetic approach provides a facile and low-cost access to a wide range of D-A organic semiconductors for emerging technologies.

15.
Materials (Basel) ; 14(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576537

RESUMO

To ensure the quality of concrete construction, the workability of fresh mix measured by rational test methods is critical to be controlled. With the presence of steel fibers, whether the test methods and evaluation indices of fresh self-compacting concrete (SCC) are adaptable for self-compacting steel fiber reinforced concrete (SFRC) needs to be systematically verified. In this paper, seven groups of self-compacting SFRC, referenced with one group SCC, were prepared by using the mix proportion design method based on the steel fiber-aggregates skeleton packing test. The main factors included the volume fraction and the length of hooked-end steel fiber. Tests for filling ability, passing ability, and stability of fresh self-compacting SFRC and SCC were carried out. Results indicate that the adaptability was well for the slump-flow test with indices of slump flow and flow time T500 to evaluate the filling ability, the J-ring flow test with an index of PA level to evaluate the passing ability, and the static segregation test with an index of static segregation resistance to evaluate the stability of fresh self-compacting SFRC. By the repeated tests and measurements, the slump cone should be vertically lifted off to a height of 300 mm within 3 s at a constant speed, the spacing of the rebar in the J-ring test should be adjusted to be two times the fiber length. If the table jumping test is used, the dynamic segregation percent should be increased to 35% to fit the result of the static segregation test. Good workability of the self-compacting SFRC prepared in this study is presented with the general evaluation of test results.

16.
Sci Bull (Beijing) ; 66(1): 62-68, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654315

RESUMO

Among all CO2 electroreduction products, methane (CH4) and ethylene (C2H4) are two typical and valuable hydrocarbon products which are formed in two different pathways: hydrogenation and dimerization reactions of the same CO intermediate. Theoretical studies show that the adsorption configurations of CO intermediate determine the reaction pathways towards CH4/C2H4. However, it is challenging to experimentally control the CO adsorption configurations at the catalyst surface, and thus the hydrocarbon selectivity is still limited. Herein, we seek to synthesize two well-defined copper nanocatalysts with controllable surface structures. The two model catalysts exhibit a high hydrocarbon selectivity toward either CH4 (83%) or C2H4 (93%) under identical reduction conditions. Scanning transmission electron microscopy and X-ray absorption spectroscopy characterizations reveal the low-coordination Cu0 sites and local Cu0/Cu+ sites of the two catalysts, respectively. CO-temperature programed desorption, in-situ attenuated total reflection Fourier transform infrared spectroscopy and density functional theory studies unveil that the bridge-adsorbed CO (COB) on the low-coordination Cu0 sites is apt to be hydrogenated to CH4, whereas the bridge-adsorbed CO plus linear-adsorbed CO (COB + COL) on the local Cu0/Cu+ sites are apt to be coupled to C2H4. Our findings pave a new way to design catalysts with controllable CO adsorption configurations for high hydrocarbon product selectivity.

17.
ChemistryOpen ; 10(6): 639-644, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34102039

RESUMO

The electrochemical conversion of carbon dioxide (CO2 ) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm-2 ), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm-2 .

18.
J Nanosci Nanotechnol ; 10(11): 7537-40, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21137977

RESUMO

A new enzymeless glucose sensor has been fabricated via electrospinning technology and subsequent calcination. The morphology and structure of the as-prepared nanofibers have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic oxidation of glucose in alkaline medium at nickel oxide modified glassy carbon electrodes has been investigated. The modified electrodes offer excellent electrocatalytic activity toward the glucose oxidation at low positive potential (0.3 V). Glucose has been determined chronoamperometrically at the surface of NiO nanofibers modified electrode in 0.5 mM NaOH. Under the optimized condition, the calibration curve is linear in the concentration range of 2 x 10(-3) mM - 1 mM, and 1 mM - 9.5 mM. The detection limit (signal-to-noise 3) and response time are 3.394 x 10(-6) M and 2 s, respectively. The NiO electrospun nanofibers is easy to prepare and feasible in economy. The modified electrode is steady and can be used repeatedly, so it is reasonable to expect its broad use in non-enzymatic glucose sensor.

19.
J Colloid Interface Sci ; 338(2): 366-70, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19619881

RESUMO

In this paper, we presented a simple and effective solution route to deposit Pt nanoparticles on electrospun In2O3 nanofibers for H2S gas detection. The morphology and chemical structure of the as-prepared samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS). The results showed that large quantities of In2O3 nanofibers with diameters about from 60 to 100 nm were obtained and the surface of them was decorated with Pt nanoparticles (5-10 nm in size). The In2O3 nanofibers decorated by Pt nanoparticles exhibited excellent gas sensing properties to H2S, such as high sensitivity, good selectivity and fast response at relatively low temperature.


Assuntos
Sulfeto de Hidrogênio/análise , Índio/química , Nanopartículas Metálicas/química , Nanotubos/química , Platina/química , Eletroquímica , Tamanho da Partícula , Sensibilidade e Especificidade , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA