Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Immunol ; 207(3): 888-901, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290105

RESUMO

Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that ßγ-crystallin fused aerolysin-like protein and trefoil factor complex (ßγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. ßγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, ßγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the ßγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that ßγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the ßγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of ßγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that ßγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.


Assuntos
Proteínas de Anfíbios/metabolismo , Antivirais/metabolismo , Córnea/patologia , Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Fatores Trefoil/metabolismo , Proteínas de Anfíbios/genética , Animais , Anuros , Toxinas Bacterianas/genética , Córnea/virologia , Feminino , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Envelope Viral/metabolismo , Envelope Viral/ultraestrutura , Internalização do Vírus , gama-Cristalinas/química
2.
J Biol Chem ; 295(30): 10293-10306, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32499370

RESUMO

Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. ßγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of ßγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of ßγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.


Assuntos
Proteínas de Anfíbios/química , Dissulfetos/química , Proteínas Citotóxicas Formadoras de Poros/química , Multimerização Proteica , Animais , Anuros , Oxirredução , Domínios Proteicos
3.
FASEB J ; 34(10): 13609-13625, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32786030

RESUMO

Bacterial pore-forming toxin aerolysin-like proteins are widely distributed in animals and plants. Emerging evidence supports their roles in host innate immunity, but their direct actions in adaptive immunity remain elusive. In this study, we found that ßγ-CAT, an aerolysin-like protein and trefoil factor complex identified in the frog Bombina maxima, modulated several steps of endocytic pathways during dendritic cell antigen presentation. The protein augmented the antigen uptake of dendritic cells and actively neutralized the acidification of cellular endocytic organelles to favor antigen presentation. In addition, the release of functional exosome-like extracellular vesicles was largely enhanced in the presence of ßγ-CAT. The cellular action of ßγ-CAT increased the number of major histocompatibility complex (MHC) I-ovalbumin and MHC II molecules on dendritic cell surfaces and the released exosome-like extracellular vesicles. An enhanced antigen presentation capacity of dendritic cell for priming of naive T cells was detected in the presence of ßγ-CAT. Collectively, these effects led to strong cytotoxic T lymphocyte responses and antigen-specific antibody responses. Our findings provide evidence that a vertebrate-secreted pore-forming protein can augment antigen presentation by directly modulating cellular endocytic and exocytic pathways, leading to robust activation of adaptive immunity.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Células Dendríticas , Endossomos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Linfócitos T , Imunidade Adaptativa , Animais , Anuros/metabolismo , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Endossomos/efeitos dos fármacos , Endossomos/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
4.
FASEB J ; 33(1): 782-795, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063438

RESUMO

Tissue repair is a highly dynamic process, and the immediate onset of acute inflammation has been considered necessary for repair. Pore-forming proteins are important, both in pathogen invasion and host immunity. However, their roles in wound healing and tissue repair are unclear. ßγ-crystallin fused aerolysin-like protein (α-subunit) and trefoil factor (ß-subunit) complex (ßγ-CAT) is a complex of a bacterial pore-forming toxin aerolysin-like protein and trefoil factor identified in the frog Bombina maxima. In this study, we established mouse cutaneous wound models to explore the effects of ßγ-CAT on skin wound healing. ßγ-CAT accelerated the healing of full-thickness wounds by improving re-epithelialization. This complex relieved dermal edema and promoted scarless healing. ßγ-CAT treatment resulted in a rapid release of IL-1ß, which initiated an acute inflammation response in the early stage of healing. Meanwhile, the expression levels of TGF-ß1, VEGF, and bFGF and the recruitment of M2 macrophages around the wound significantly increased after ßγ-CAT treatment. ßγ-CAT protected skin wounds against methicillin-resistant Staphylococcus aureus by improving neutrophil recruitment at the site of the wound. Overall, our results suggest that ßγ-CAT can promote tissue repair and protect skin wounds against antibiotic-resistant bacterial infection by triggering the acute inflammatory response. This is the first example that aerolysin-like pore-forming proteins widely existing in plants and animals may act in wound healing and tissue repair.-Gao, Z.-H., Deng, C.-J., Xie, Y.-Y., Guo, X.-L., Wang, Q.-Q., Liu, L.-Z., Lee, W.-H., Li, S.-A., Zhang, Y. Pore-forming toxin-like protein complex expressed by frog promotes tissue repair.


Assuntos
Proteínas Citotóxicas Formadoras de Poros/metabolismo , Toxinas Biológicas/metabolismo , Cicatrização , Animais , Anuros , Linhagem Celular , Colágeno/metabolismo , Cristalinas/metabolismo , Células Epiteliais/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/citologia , Humanos , Interleucina-1beta/metabolismo , Macrófagos/citologia , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Neutrófilos/citologia , Coelhos , Pele/lesões , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Fator de Crescimento Transformador beta1/metabolismo , Fatores Trefoil/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Infect Dis ; 215(11): 1753-1763, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419297

RESUMO

Many intracellular pathogens invade cells via endocytic organelles and have adapted to the drop in pH along the endocytic pathway. However, the strategy by which the host cell counteracts this pathogen adaptation remains unclear. ßγ-CAT is an aerolysin-like pore-forming protein and trefoil factor complex in the frog Bombina maxima. We report here that ßγ-CAT, as a host-secreted factor with an intrinsic channel-forming property, is the first example of a molecule that actively neutralizes the acidification of endocytic organelles to counteract Listeria monocytogenes infection. Immunodepletion of endogenous ßγ-CAT largely impaired the control of L. monocytogenes by frog cells. ßγ-CAT elevates the pH of L. monocytogenes-containing vacuoles to limit the vacuole escape of L. monocytogenes to cytosol. Furthermore, ßγ-CAT promotes intracellular L. monocytogenes clearance via autophagy and by that the nonlytic expulsion of the bacteria from host cells. Finally, ßγ-CAT attenuated the dissemination of L. monocytogenes in vivo. These findings reveal a novel host strategy and effectors that combat pathogen adaptation to acidic conditions along the endocytic pathway.


Assuntos
Lisossomos/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Fatores Trefoil/imunologia , Animais , Anuros , Autofagia/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/microbiologia , Lisossomos/microbiologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(18): 6702-7, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24733922

RESUMO

Aerolysins are virulence factors belonging to the bacterial ß-pore-forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. ßγ-CAT, a complex of an aerolysin-like protein subunit (two ßγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When ßγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1ß release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1ß was potently triggered by ßγ-CAT from the frog peritoneal cells and murine macrophages in vitro. ßγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1ß maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Peptídeos/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Sequência de Aminoácidos , Animais , Anuros/genética , Anuros/imunologia , Anuros/microbiologia , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Comamonas , Endocitose , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Imunidade Inata , Inflamassomos/imunologia , Interleucina-1beta/biossíntese , Lisossomos/imunologia , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Fator Trefoil-2
7.
Biochim Biophys Acta ; 1843(7): 1393-401, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24732013

RESUMO

The protease-activated receptor 1 (PAR1) is a G-protein-coupled receptor that is irreversibly activated by either thrombin or metalloprotease 1. Due this irrevocable activation, activated internalization and degradation are critical for PAR1 signaling termination. Prohibitin (PHB) is an evolutionarily conserved, ubiquitously expressed, pleiotropic protein and belongs to the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain family. In a previous study, we found that PHB localized on the platelet membrane and participated in PAR1-mediated human platelet aggregation, suggesting that PHB likely regulates the signaling of PAR1. Unfortunately, PHB's exact function in PAR1 internalization and degradation is unclear. In the current study, flow cytometry revealed that PHB expressed on the surface of endothelial cells (HUVECs) but not cancer cells (MDA-MB-231). Further confocal microscopy revealed that PHB dynamically associates with PAR1 in a time-dependent manner following induction with PAR1-activated peptide (PAR1-AP), though differently between HUVECs and MDA-MB-231 cells. Depletion of PHB by RNA interference significantly inhibited PAR1 activated internalization and led to sustained Erk1/2 phosphorylation in the HUVECs; however, a similar effect was not observed in MDA-MB-231 cells. For both the endothelial and cancel cells, PHB repressed PAR1 degradation, while knockdown of PHB led to increased PAR1 degradation, and PHB overexpression inhibited PAR1 degradation. These results suggest that persistent PAR1 signaling due to the absence of membrane PHB and decreased PAR1 degradation caused by the upregulation of intracellular PHB in cancer cells (such as MDA-MB-231 cells) may render cells highly invasive. As such, PHB may be a novel target in future anti-cancer therapeutics, or in more refined cancer malignancy diagnostics.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Receptor PAR-1/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microscopia Confocal , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Especificidade de Órgãos , Peptídeos/farmacologia , Proibitinas , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais
8.
Antimicrob Agents Chemother ; 58(6): 3144-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637683

RESUMO

The therapeutic potential of antimicrobial peptides (AMPs) has been evaluated in many infectious diseases. However, the topical application of AMPs for ocular bacterial infection has not been well investigated. The AMP OH-CATH30, which was identified in the king cobra, exhibits potent antimicrobial activity. In this study, we investigated the therapeutic potential of OH-CATH30 for Pseudomonas aeruginosa keratitis. Ten isolates of P. aeruginosa from individuals with keratitis were susceptible to OH-CATH30 but not to cefoperazone, ciprofloxacin, gentamicin, and levofloxacin. The microdilution checkerboard assay showed that OH-CATH30 exhibited synergistic activity with ciprofloxacin and levofloxacin against antibiotic-resistant P. aeruginosa. Meanwhile, P. aeruginosa did not develop resistance to OH-CATH30, even after exposure at 0.5× the MIC for up to 25 subcultures. Furthermore, treatment with OH-CATH30, alone or in combination with levofloxacin, significantly improved the clinical outcomes of rabbit keratitis induced by antibiotic-resistant P. aeruginosa. Taken together, our data indicate that the topical application of OH-CATH30 is efficacious against drug-resistant P. aeruginosa keratitis. In addition, our study highlights the potential application of AMPs in treating ocular bacterial infections.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Oculares Bacterianas/tratamento farmacológico , Ceratite/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Administração Tópica , Animais , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Infecções Oculares Bacterianas/microbiologia , Gentamicinas/farmacologia , Humanos , Ceratite/microbiologia , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Coelhos
9.
Antimicrob Agents Chemother ; 56(6): 3309-17, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22491685

RESUMO

Antimicrobial peptides (AMPs) have been considered alternatives to conventional antibiotics for drug-resistant bacterial infections. However, their comparatively high toxicity toward eukaryotic cells and poor efficacy in vivo hamper their clinical application. OH-CATH30, a novel cathelicidin peptide deduced from the king cobra, possesses potent antibacterial activity in vitro. The objective of this study is to evaluate the efficacy of OH-CATH30 and its analog OH-CM6 against drug-resistant bacteria in vitro and in vivo. The MICs of OH-CATH30 and OH-CM6 ranged from 1.56 to 12.5 µg/ml against drug-resistant clinical isolates of several pathogenic species, including Escherichia coli, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The MICs of OH-CATH30 and OH-CM6 were slightly altered in the presence of 25% human serum. OH-CATH30 and OH-CM6 killed E. coli quickly (within 60 min) by disrupting the bacterial cytoplasmic membrane. Importantly, the 50% lethal doses (LD(50)) of OH-CATH30 and OH-CM6 in mice following intraperitoneal (i.p.) injection were 120 mg/kg of body weight and 100 mg/kg, respectively, and no death was observed at any dose up to 160 mg/kg following subcutaneous (s.c.) injection. Moreover, 10 mg/kg OH-CATH30 or OH-CM6 significantly decreased the bacterial counts as well as the inflammatory response in a mouse thigh infection model and rescued infected mice in a bacteremia model induced by drug-resistant E. coli. Taken together, our findings demonstrate that the natural cathelicidin peptide OH-CATH30 and its analogs exhibit relatively low toxicity and potent efficacy in mouse models, indicating that they may have therapeutic potential against the systemic infections caused by drug-resistant bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Células Cultivadas , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Hemólise , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Catelicidinas
10.
Fitoterapia ; 139: 104394, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31669719

RESUMO

Naturally occurring monoterpenes are known for their various pharmacological activities including anti-inflammation. KV1.3 ion channel is a voltage-gated potassium channel and has been validated as a drug target for autoimmune and chronic inflammatory diseases like psoriasis. Here we experimentally test the direct interaction between monoterpenes and KV1.3 ion channel. Our electrophysiological analysis determined that monoterpenes (geraniol, nerol, ß-citronellol, citral and linalool) have inhibitory effects on KV1.3 ion channel. Representatively, geraniol reversibly blocked KV1.3 currents in a voltage-dependent manner with an IC50 of 490.50 ±â€¯1.04 µM at +40 mV in HEK293T cells. At the effective concentrations, geraniol also inhibited cytokine secretion of activated human T cells, including IL-2, TNF-α and IFN-γ. In an imiquimod-induced psoriasis-like animal model, geraniol administration significantly reduced psoriasis area and severity index scores, ameliorated the deteriorating histopathology and decreased the degree of splenomegaly. Together, our findings not only suggest that monoterpenes may serve as lead molecules for the development of KV1.3 inhibitors, but also indicate that geraniol could be considered as a promising therapeutic candidate to treat autoimmune diseases.


Assuntos
Monoterpenos Acíclicos/farmacologia , Anti-Inflamatórios/farmacologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Psoríase/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
11.
Commun Biol ; 2: 59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775460

RESUMO

Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. ßγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of ßγ-CAT remain elusive. Here, the actions of ßγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of ßγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of ßγ-CAT. Finally, the ability of ßγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses.


Assuntos
Glicoesfingolipídeos Acídicos/química , Proteínas de Anfíbios/imunologia , Toxinas Bacterianas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Lisossomos/imunologia , Complexos Multiproteicos/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Fator Trefoil-3/imunologia , Glicoesfingolipídeos Acídicos/antagonistas & inibidores , Glicoesfingolipídeos Acídicos/biossíntese , Aeromonas hydrophila/crescimento & desenvolvimento , Aeromonas hydrophila/patogenicidade , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Anuros , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Ceramidas/antagonistas & inibidores , Ceramidas/biossíntese , Ceramidas/química , Cerebrosídeos/antagonistas & inibidores , Cerebrosídeos/biossíntese , Cerebrosídeos/química , Gangliosídeos/antagonistas & inibidores , Gangliosídeos/biossíntese , Gangliosídeos/química , Expressão Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Interleucina-1beta/biossíntese , Lisossomos/efeitos dos fármacos , Lisossomos/microbiologia , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/microbiologia , Meperidina/análogos & derivados , Meperidina/farmacologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esfingosina/antagonistas & inibidores , Esfingosina/biossíntese , Esfingosina/química , Células THP-1 , Fator Trefoil-3/genética , Fator Trefoil-3/metabolismo
12.
Int J Nanomedicine ; 13: 5771-5786, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30310280

RESUMO

BACKGROUND: Nonscar wound healing is a desirable treatment for cutaneous wounds worldwide. Peptide OH-CATH30 (OH30) from king cobra can selectively regulate the innate immunity and create an anti-inflammatory micro-environment which might benefit nonscar wound healing. PURPOSE: To overcome the enzymatic digestion and control release of OH30, OH30 encapsulated in carboxymethyl chitosan nanoparticles (CMCS-OH30 NP) were prepared and their effects on wound healing were evaluated. METHODS: CMCS-OH30 NP were prepared by mild ionic gelation method and properties of the prepared CMCS-OH30 NP were determined by dynamic light scattering. Encapsulation efficiency, stability and release profile of OH30 from prepared CMCS-OH30 NP were determined by HPLC. Cytotoxicity, cell migration and cellular uptake of CMCS-OH30 NP were determined by conventional methods. The effects of prepared CMCS-OH30 NP on the wound healing was investigated by full-thickness excision animal models. RESULTS: The release of encapsulated OH30 from prepared CMCS-OH30 NP was maintained for at least 24 h in a controlled manner. CMCSOH30 NP enhanced the cell migration but had no effects on the metabolism and proliferation of keratinocytes. In the full-thickness excision animal models, the CMCS-OH30 NP treatment significantly accelerated the wound healing compared with CMCS or OH30 administration alone. Histopathological examination suggested that CMCS-OH30 NP promoted wound healing by enhancing the granulation tissue formation through the re-epithelialized and neovascularized composition. CMCS-OH30 NP induced a steady anti-inflammatory cytokine IL10 expression but downregulated the expressions of several pro-inflammatory cytokines. CONCLUSION: The prepared biodegradable drug delivery system accelerates the healing and shows better prognosis because of the combined effects of OH30 released from the nanoparticles.


Assuntos
Quitosana/análogos & derivados , Cicatriz/patologia , Nanopartículas/química , Peptídeos/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Movimento Celular/efeitos dos fármacos , Quitosana/química , Colágeno/metabolismo , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Endocitose , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Camundongos Nus , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Peptídeos/farmacologia , Células RAW 264.7
13.
Cytotechnology ; 70(1): 313-320, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28965287

RESUMO

Dimethyl sulfoxide (DMSO) is widely used in the laboratory and in clinical situations because it is soluble in both aqueous and organic media and can be used to treat many types of diseases. Thus, it is meaningful to assess the comprehensive and in-depth biological activities of DMSO. Here, we showed that a high concentration of DMSO induced pro-inflammatory cytokine interleukin-1ß (IL-1ß) secretion from the monocytic cell line THP-1. DMSO-induced IL-1ß secretion was dependent on intracellular caspase-1 activation. Further study revealed that the activation of caspase-1 by DMSO relied on NLRP3 inflammasome formation. It is generally accepted that the NLRP3 inflammasome is activated by reactive oxygen species generation or potassium efflux; however, the common NLRP3 inflammasome trigger remains controversial. Here, we showed that although DMSO is a ROS scavenger, this chemical increases membrane permeability and potassium efflux, and the formation of the NLRP3 inflammasome reflects the increased membrane permeability and potassium efflux induced by DMSO. The present study reveals a new characteristic of DMSO, which should be considered when using this chemical in either the laboratory or the clinic.

14.
J Med Chem ; 56(22): 9136-45, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24151910

RESUMO

Sepsis, which is a systemic inflammatory response that follows a bacterial infection, has a high mortality rate and limited therapeutic options. Here we show that the antimicrobial peptide OH-CATH30, which naturally occurs in snake, selectively regulates the innate immune response to protect mice from lethal sepsis. The administration of OH-CATH30 significantly improves the survival rate of mice infected by antibiotic-susceptible and -resistant pathogens, including Escherichia coli , Pseudomonas aeruginosa , and Staphylococcus aureus . OH-CATH30 selectively up-regulates the production of chemokines and cytokines without harmful immune response. Recruitment of monocytes, macrophages, and neutrophils to the infection site is pivotal to the protective capacity of OH-CATH30. Furthermore, the alternative activation of the innate immune response by OH-CATH30 depends on p38 mitogen-activated protein kinase signaling. Taken together, our study demonstrates that OH-CATH30, a naturally occurring antimicrobial peptide, selectively stimulates the innate immune response to protect against sepsis.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Peptídeos/farmacologia , Sepse/imunologia , Sequência de Aminoácidos , Animais , Antibacterianos/química , Produtos Biológicos/química , Linhagem Celular , Quimiocina CXCL2/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peptídeos/química , Sepse/prevenção & controle , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
PLoS One ; 8(5): e63759, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717478

RESUMO

It has been established that Adenosine-5'-triphosphate (ATP) can activate the NLRP3 inflammasome. However, the physiological effect of extracellular ATP on NLRP3 inflammasome activation has not yet been investigated. In the present study, we found that ATP was indeed released during bacterial infection. By using a murine peritonitis model, we also found that ATP promotes the fight against bacterial infection in mice. ATP induced the secretion of IL-1ß and chemokines by murine bone marrow-derived macrophages in vitro. Furthermore, the intraperitoneal injection of ATP elevated the levels of IL-1ß and chemokines in the mouse peritoneal lavage. Neutrophils were rapidly recruited to the peritoneum after ATP injection. In addition, the effects on cytokine and chemokine secretion and neutrophil recruitment were markedly attenuated by the pre-administration of the caspase-1 inhibitor Ac-YVAD-cho. Ac-YVAD-cho also significantly attenuated the protective effect of ATP against bacterial infection. In the present study, we demonstrated a protective role for ATP during bacterial infection and this effect was related to NLRP3 inflammasome activation. Together, these results suggest a role for ATP in initiating the immune response in hosts suffering from infections.


Assuntos
Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Infecções Bacterianas/prevenção & controle , Proteínas de Transporte/metabolismo , Inflamassomos/imunologia , Infiltração de Neutrófilos/imunologia , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Proteínas de Transporte/imunologia , Caspase 1/imunologia , Caspase 1/metabolismo , Quimiocina CXCL2/imunologia , Quimiocina CXCL2/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peritonite/imunologia , Peritonite/metabolismo
16.
Dongwuxue Yanjiu ; 33(1): 1-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22345001

RESUMO

Animal models are essential for the development of new anti-infectious drugs. Although some bacterial infection models have been established in rodents, small primate models are rare. Here, we report on two bacterial infection models established in tree shrew (Tupaia belangeri chinensis). A burnt skin infection model was induced by dropping 5×10(6) CFU of Staphylococcus aureus on the surface of a wound after a third degree burn. This dose of S. aureus caused persistent infection for 7 days and obvious inflammatory response was observed 4 days after inoculation. A Dacron graft infection model, 2×10(6) CFU of Pseudomonas aeruginosa also caused persistent infection for 6 days, with large amounts of pus observed 3 days after inoculation. These models were used to evaluate the efficacy of levofloxacin (LEV) and cefoperazone (CPZ), which reduced the viable bacteria in skin to 4log10 and 5log10 CFU/100 mg tissue, respectively. The number of bacteria in graft was significantly reduced by 4log10 CFU/mL treatment compared to the untreated group (P<0.05). These results suggest that two bacterial infection models were successfully established in tree shrew using P. aeruginosa and S. aureus. In addition, tree shrew was susceptible to P. aeruginosa and S. aureus, thus making it an ideal bacterial infection animal model for the evaluation of new antimicrobials.


Assuntos
Antibacterianos/farmacologia , Queimaduras/complicações , Modelos Animais de Doenças , Pseudomonas aeruginosa/efeitos dos fármacos , Dermatopatias Bacterianas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Tupaia , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/etiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Dermatopatias Bacterianas/etiologia , Dermatopatias Bacterianas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA