Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(14): 5874-5882, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35763376

RESUMO

Constructing 3D skeletons modified with lithiophilic seeds has proven effective in achieving dendrite-free lithium metal anodes. However, these lithiophilic seeds are mostly alloy- or conversion-type materials, and they tend to aggregate and redistribute during cycling, resulting in the failure of regulating Li deposition. Herein, we address this crucial but long-neglected issue by using intercalation-type lithiophilic seeds, which enable antiaggregation owing to their negligible volume expansion and high electrochemical stability against Li. To exemplify this, a 3D carbon-based host is built, in which ultrafine TiO2 seeds are uniformly embedded in nitrogen-doped hollow porous carbon spheres (N-HPCSs). The TiO2@N-HPCSs electrode exhibits superior Coulombic efficiency, high-rate capability, and long-term stability when evaluated as compertitive anodes for Li metal batteries. Furthermore, the superiority of intercalation-type seeds is comprehensively revealed through controlled experiments by various in situ/ex situ electron and optical microscopies, which highlights the excellent structural stability and lithiophilicity of TiO2 nanoseeds upon repeated cycling.


Assuntos
Lítio , Sementes , Carbono , Eletrodos
2.
Nat Commun ; 13(1): 5050, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030266

RESUMO

Solid electrolytes hold the promise for enabling high-performance lithium (Li) metal batteries, but suffer from Li-filament penetration issues. The mechanism of this rate-dependent failure, especially the impact of the electrochemo-mechanical attack from Li deposition, remains elusive. Herein, we reveal the Li deposition dynamics and associated failure mechanism of solid electrolyte by visualizing the Li|Li7La3Zr2O12 (LLZO) interface evolution via in situ transmission electron microscopy (TEM). Under a strong mechanical constraint and low charging rate, the Li-deposition-induced stress enables the single-crystal Li to laterally expand on LLZO. However, upon Li "eruption", the rapidly built-up local stress, reaching at least GPa level, can even crack single-crystal LLZO particles without apparent defects. In comparison, Li vertical growth by weakening the mechanical constraint can boost the local current density up to A·cm-2 level without damaging LLZO. Our results demonstrate that the crack initiation at the Li|LLZO interface depends strongly on not only the local current density but also the way and efficiency of mass/stress release. Finally, potential strategies enabling fast Li transport and stress relaxation at the interface are proposed for promoting the rate capability of solid electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA