Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 37(13): 2652-4, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22743484

RESUMO

We demonstrate that few-layered graphene sheets used as a saturable absorber can provide efficient Q-switching and mode-locking modulation in 1.34 µm Nd:GdVO(4) bulk lasers. The minimum Q-switched pulses were 450 ns for 260 mW average power, 43 kHz repetition rate, and 2.5 µJ pulse energy. For the mode-locked laser, an average power of 1.29 W was achieved with 11 ps pulse duration and 13 nJ pulse energy. To our knowledge, this average power is the highest yet obtained from a graphene mode-locked laser, and the corresponding optical-optical efficiency of 23% is the best result among 1.3 µm neodymium mode-locked lasers. The quality factor M(2) of the Q-switched beam was 1.4 and 1.6 in the horizontal and longitudinal planes, respectively, and the M(2) of the mode-locked beam reached 1.1 and 1.0. These results clearly indicate the advantages of few-layered graphene as a saturable absorber.

2.
Opt Express ; 19(10): 9950-5, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643251

RESUMO

We demonstrated that the graphene could be used as an effective saturable absorber for Q-switched solid-state lasers. A graphene saturable absorber mirror was fabricated with large and high-quality graphene sheets deprived from the liquid phase exfoliation. Using this mirror, 105-ns pulses and 2.3-W average output power are obtained from a passively Q-switched Nd:GdVO(4) laser. The maximum pulse energy is 3.2 µJ. The slope efficiency is as high as 37% approximating to 40% of the continue-wave laser, indicating a low intrinsic loss of the graphene.

3.
Opt Lett ; 36(10): 1948-50, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21593945

RESUMO

High-quality graphene sheets with lateral size over 20 µm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer. To date, to our knowledge, they are the largest graphene sheets prepared by exfoliation in the liquid phase. A saturable absorber mirror was fabricated based on these sheets. We exploited it to realize mode-locking operation in a diode-pumped Nd:GdVO(4) laser. A pulse duration of 16 ps was produced with an average power of 360 mW and a highest pulse energy of 8.4 nJ for a graphene mode-locked laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA