RESUMO
Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza ruï¬pogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.
Assuntos
Endosperma , Oryza , Grão Comestível/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Homeostase/genética , Oryza/genética , Oryza/metabolismo , OxirreduçãoRESUMO
Cytoplasmic male sterility (CMS) determined by mitochondrial genes and restorer of fertility (Rf) controlled by nuclear-encoded genes provide the breeding systems of many hybrid crops for the utilization of heterosis. Although several CMS/Rf systems have been widely exploited in rice, hybrid breeding using these systems has encountered difficulties due to either fertility instability or complications of two-locus inheritance or both. In this work, we characterized a type of CMS, Fujian Abortive cytoplasmic male sterility (CMS-FA), with stable sporophytic male sterility and a nuclear restorer gene that completely restores hybrid fertility. CMS is caused by the chimeric open reading frame FA182 that specifically occurs in the mitochondrial genome of CMS-FA rice. The restorer gene OsRf19 encodes a pentatricopeptide repeat (PPR) protein targeted to mitochondria, where it mediates the cleavage of FA182 transcripts, thus restoring male fertility. Comparative sequence analysis revealed that OsRf19 originated through a recent duplication in wild rice relatives, sharing a common ancestor with OsRf1a/OsRf5, a fertility restorer gene for Boro II and Hong-Lian CMS. We developed six restorer lines by introgressing OsRf19 into parental lines of elite CMS-WA hybrids; hybrids produced from these lines showed equivalent or better agronomic performance relative to their counterparts based on the CMS-WA system. These results demonstrate that CMS-FA/OsRf19 provides a highly promising system for future hybrid rice breeding.
Assuntos
Oryza , Infertilidade das Plantas , Hibridização Genética , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: Lysine demethylase 5C (KDM5C) has been implicated in the development of several human cancers. This study aims to investigate the role of KDM5C in the progression of colorectal cancer (CRC) and explore the associated molecular mechanism. METHODS: Bioinformatics tools were employed to predict the target genes of KDM5C in CRC. The expression levels of KDM5C and prefoldin subunit 5 (PFDN5) in CRC cells were determined by RT-qPCR and western blot assays. The interaction between KDM5C, H3K4me3, and PFDN5 was validated by chromatin immunoprecipitation. Expression and prognostic values of KDM5C and PFDN5 in CRC were analyzed in a cohort of 72 patients. The function of KDM5C/PFDN5 in c-Myc signal transduction was analyzed by luciferase assay. Silencing of KDM5C and PFDN5 was induced in CRC cell lines to analyze the cell malignant phenotype in vitro and tumorigenic activity in nude mice. RESULTS: KDM5C exhibited high expression, while PFDN5 displayed low expression in CRC cells and clinical CRC samples. High KDM5C levels correlated with poor survival and unfavorable clinical presentation, whereas elevated PFDN5 correlated with improved patient outcomes. KDM5C mediated demethylation of H3K4me3 on the PFDN5 promoter, suppressing its transcription and thereby enhancing the transcriptional activity of c-Myc. KDM5C knockdown in CRC cells suppressed cell proliferation, migration and invasion, epithelial-mesenchymal transition, and tumorigenic activity while increasing autophagy and apoptosis rates. However, the malignant behavior of cells was restored by the further silencing of PFDN5. CONCLUSION: This study demonstrates that KDM5C inhibits PFDN5 transcription, thereby activating c-Myc signal transduction and promoting CRC progression.
Assuntos
Neoplasias Colorretais , Lisina , Chaperonas Moleculares , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Lisina/genética , Lisina/metabolismo , Camundongos Nus , Processos Neoplásicos , Transdução de SinaisRESUMO
Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.
Assuntos
Vigor Híbrido , Oryza , Vigor Híbrido/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genéticaRESUMO
Aerobic glycolysis is critical for the energy metabolism of cancer cells. This study focuses on the regulation of forkhead box A2 (FOXA2) on pyruvate kinase M2 (PKM2) and their effects on the glycolytic activity and malignant phenotype of thyroid carcinoma (THCA) cells. By analysing four Gene Expression Omnibus datasets and querying bioinformatics systems, we obtained FOXA2 as a poorly expressed transcription factor in THCA. Later, we validated decreased mRNA and protein levels of FOXA2 in THCA cells by quantitative polymerase chain reaction and western blot assays. FOXA2 upregulation in THCA cells suppressed the glucose uptake and lactate production, and it reduced the extracellular acidification rate, but increased the oxygen consumption rate of cells. Meanwhile, the FOXA2 overexpression blocked the proliferation and mobility, and the tumourigenic activity of cancer cells. The chromatin immunoprecipitation and luciferase assays showed that FOXA2 bound to PKM2 promoter and suppressed the transcription of PKM2, which was highly expressed in THCA cells. Further upregulation of PKM2 elevated the ß-catenin, c-Myc and cyclin D1 levels and restored the glycolytic activity as well as the malignant properties of cancer cells. Collectively, this work reveals that FOXA2 suppresses aerobic glycolysis and progression of THCA by blocking PKM2 transcription and inactivating the Wnt/ß-catenin pathway.
Assuntos
Neoplasias da Glândula Tireoide , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Regulação para Cima , Neoplasias da Glândula Tireoide/genética , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismoRESUMO
In plants, enhanced defense often compromises growth and development, which is regarded as trade-offs between growth and defense. Here we identified a gene, OsALDH2B1, that functions as a master regulator of the growth-defense trade-off in rice. OsALDH2B1 has its primary function as an aldehyde dehydrogenase and a moonlight function as a transcriptional regulator. Loss of function of OsALDH2B1 greatly enhanced resistance to broad-spectrum pathogens, including fungal blast, bacterial leaf blight, and leaf streak, but caused severe phenotypic changes such as male sterility and reduced plant size, grain size, and number. We showed that its primary function as a mitochondrial aldehyde dehydrogenase conditions male fertility. Its moonlight function of transcriptional regulation, featuring both repressing and activating activities, regulates a diverse range of biological processes involving brassinolide, G protein, jasmonic acid, and salicylic acid signaling pathways. Such regulations cause large impacts on the morphology and immunity of rice plants. The versatile functions of OsALDH2B1 provide an example of the genic basis of growth-defense trade-offs in plants.
Assuntos
Aldeído Desidrogenase/imunologia , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Aldeído Desidrogenase/genética , Ciclopentanos/metabolismo , Resistência à Doença , Magnaporthe/fisiologia , Oryza/genética , Oryza/metabolismo , Oryza/microbiologia , Oxilipinas/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismoRESUMO
High temperatures cause huge yield losses in rice. Heat-shock factors (Hsfs) are key transcription factors which regulate the expression of heat stress-responsive genes, but natural variation in and functional characterization of Hsfs have seldom been reported. A significant heat response locus was detected via a genome-wide association study (GWAS) using green leaf area as an indicative trait. A miniature inverted-repeat transposable element (MITE) in the promoter of a candidate gene, HTG3 (heat-tolerance gene on chromosome 3), was found to be significantly associated with heat-induced expression of HTG3 and heat tolerance (HT). The MITE-absent variant has been selected in heat-prone rice-growing regions. HTG3a is an alternatively spliced isoform encoding a functional Hsf, and experiments using overexpression and knockout rice lines showed that HTG3a positively regulates HT at both vegetative and reproductive stages. The HTG3-regulated genes were enriched for heat shock proteins and jasmonic acid signaling. Two heat-responsive JASMONATE ZIM-DOMAIN (JAZ) genes were confirmed to be directly upregulated by HTG3a, and one of them, OsJAZ9, positively regulates HT. We conclude that HTG3 plays an important role in HT through the regulation of JAZs and other heat-responsive genes. The MITE-absent allele may be valuable for HT breeding in rice.
Assuntos
Oryza , Termotolerância , Ciclopentanos , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Oryza/genética , Oryza/metabolismo , Oxilipinas , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Termotolerância/genéticaRESUMO
KEY MESSAGE: We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice. Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.
Assuntos
Oryza , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
KEY MESSAGE: qFC6, a major quantitative trait locus for rice crude fat content, was fine mapped to be identical with Wx. FC6 negatively regulates crude fat content and rice quality. Starch, protein and lipids are the three major components in rice endosperm. The lipids content in rice influences both storage and quality. In this study, we identified a quantitative trait locus (QTL), qFC6, for crude fat (free lipids) content through association analysis and linkage analysis. Gene-based association analysis revealed that LOC_Os06g04200, also known as Wx, was the candidate gene for qFC6. Complementation and knockout transgenic lines revealed that Wx negatively regulates crude fat content. Lipid composition and content analysis by gas chromatography and taste evaluation analysis showed that FC6 positively influenced bound lipids content and negatively affected both free lipids content and taste. Besides, higher free lipids content rice varieties exhibit more lustrous appearance after cooking and by adding extra oil during cooking could improve rice luster and taste score, indicating that higher free lipids content may make rice more lustrous and delicious. Together, we cloned a QTL coordinating rice crude fat content and eating quality and assisted in uncovering the genetic basis of rice lipid content and in the improvement of rice eating quality.
Assuntos
Oryza , Amilose/química , Ligação Genética , Lipídeos , Oryza/metabolismo , Locos de Características Quantitativas , Amido/químicaRESUMO
Rice grain size is a key determinant of both grain yield and quality. In this study, we conducted QTL mapping on grain size using a recombinant inbred line (RIL) population derived from a cross between japonica variety Beilu130 (BL130) and indica variety Jin23B (J23B). A total of twenty-two QTL related to grain length (GL), grain width (GW), grain length-to-width ratio (LWR), grain thickness (GT), and thousand grain weight (TGW) were detected under two environments, and 14 of them were repeatedly detected. Two minor QTL, qTGW2b and qGL9, were validated and further delimited to regions of 631 kb and 272 kb, respectively. Parental sequence comparison of genes expressed in inflorescence in corresponding candidate regions identified frameshifts in the exons of LOC_Os02g38690 and LOC_Os02g38780, both of which encode protein phosphatase 2C-containing protein, and LOC_Os09g29930, which encodes a BIM2 protein. Scanning electron microscopy (SEM) analysis revealed that the increase of cell size rather than cell number caused the differences in grain size between NILs of qTGW2b and qGL9. Quantitative RT-PCR analysis showed that the expression levels of EXPA4, EXPA5, EXPA6, EXPB3, EXPB4, and EXPB7 were significantly different in both qTGW2b NILs and qGL9 NILs. Our results lay the foundation for the cloning of qTGW2b and qGL9, and provide genetic materials for the improvement of rice yield and quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01328-2.
RESUMO
BACKGROUND: Mucin 16 (MUC16), a cell surface-associated mucin, has been implicated to be upregulated in a large repertoire of malignances. However, its function in the pathogenesis of colorectal cancer (CRC) is unknown. AIMS: Here, we explored the regulatory role of MUC16 in CRC. METHODS: First, tumor and paracancerous tissues, and serum samples from 162 CRC patients, peripheral blood samples from 48 healthy volunteers and 72 benign colorectal patients were collected. The correlation between the MUC16 expression and the clinical phenotypes of the patients was analyzed. Subsequently, HCT116 and SW480 cells with deletion of MUC16 were established to detect changes in the growth and metastatic capacities of CRC cells. The genes with the highest correlation with MUC16 were predicted by bioinformatics, and their binding relationships were detected by Co-IP and double-labeled immunofluorescence, followed by functional rescue experiments. RESULTS: Overexpression of MUC16 in CRC patients was positively correlated with serum biomarkers and poor prognosis of patients. It was demonstrated by in vitro and in vivo experiments that knocking-down the expression of MUC16 could significantly inhibit the growth and metastasis of CRC cells. MUC16 activated janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) by interacting with JAK2. Further overexpression of JAK2 in cells with poor expression of MUC16 revealed a significant increase in the proliferative and metastatic capacities of CRC cells. CONCLUSIONS: MUC16 contributes to the development and progression of CRC by binding to JAK2, thereby promoting phosphorylation of JAK2 and further activating STAT3 phosphorylation.
Assuntos
Antígeno Ca-125 , Neoplasias Colorretais , Janus Quinase 2 , Antígeno Ca-125/genética , Antígeno Ca-125/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Proteínas de Membrana , Fosforilação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.
Assuntos
Vigor Híbrido/genética , Oryza/genética , Alelos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Frequência do Gene/genética , Genoma de Planta , Estudo de Associação Genômica Ampla/métodos , Genômica , Vigor Híbrido/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA , Transcriptoma/genéticaRESUMO
Grain size is a key determinant of both grain weight and grain quality. Here, we report the map-based cloning of a novel quantitative trait locus (QTL), GLW7.1 (Grain Length, Width and Weight 7.1), which encodes the CCT motif family protein, GHD7. The QTL is located in a 53 kb deletion fragment in the cultivar Jin23B, compared with the cultivar CR071. Scanning electron microscopy analysis and expression analysis revealed that GLW7.1 promotes the transcription of several cell division and expansion genes, further resulting in a larger cell size and increased cell number, and finally enhancing the grain size as well as grain weight. GLW7.1 could also increase endogenous GA content by up-regulating the expression of GA biosynthesis genes. Yeast two-hybrid assays and split firefly luciferase complementation assays revealed the interactions of GHD7 with seven grain-size-related proteins and the rice DELLA protein SLR1. Haplotype analysis and transcription activation assay revealed the effect of six amino acid substitutions on GHD7 activation activity. Additionally, the NIL with GLW7.1 showed reduced chalkiness and improved cooking and eating quality. These findings provide a new insight into the role of Ghd7 and confirm the great potential of the GLW7.1 allele in simultaneously improving grain yield and quality.
Assuntos
Oryza , Alelos , Grão Comestível/genética , Oryza/genética , Oryza/metabolismo , Locos de Características QuantitativasRESUMO
Drug-mediated or medical condition-mediated disruption of hERG function accounts for the main cause of acquired long-QT syndrome (acLQTs), which predisposes affected individuals to ventricular arrhythmias (VA) and sudden death. Many Chinese herbal medicines, especially alkaloids, have risks of arrhythmia in clinical application. The characterized mechanisms behind this adverse effect are frequently associated with inhibition of cardiac hERG channels. The present study aimed to assess the potent effect of Rutaecarpine (Rut) on hERG channels. hERG-HEK293 cell was applied for evaluating the effect of Rut on hERG channels and the underlying mechanism. hERG current (IhERG ) was measured by patch-clamp technique. Protein levels were analysed by Western blot, and the phosphorylation of Sp1 was determined by immunoprecipitation. Optical mapping and programmed electrical stimulation were used to evaluate cardiac electrophysiological activities, such as APD, QT/QTc, occurrence of arrhythmia, phase singularities (PSs), and dominant frequency (DF). Our results demonstrated that Rut reduced the IhERG by binding to F656 and Y652 amino acid residues of hERG channel instantaneously, subsequently accelerating the channel inactivation, and being trapped in the channel. The level of hERG channels was reduced by incubating with Rut for 24 hours, and Sp1 in nucleus was inhibited simultaneously. Mechanismly, Rut reduced threonine (Thr)/ tyrosine (Tyr) phosphorylation of Sp1 through PI3K/Akt pathway to regulate hERG channels expression. Cell-based model unables to fully reveal the pathological process of arrhythmia. In vivo study, we found that Rut prolonged QT/QTc intervals and increased induction rate of ventricular fibrillation (VF) in guinea pig heart after being dosed Rut for 2 weeks. The critical reasons led to increased incidence of arrhythmias eventually were prolonged APD90 and APD50 and the increase of DF, numbers of PSs, incidence of early after-depolarizations (EADs). Collectively, the results of this study suggest that Rut could reduce the IhERG by binding to hERG channels through F656 and Y652 instantaneously. While, the PI3K/Akt/Sp1 axis may play an essential role in the regulation of hERG channels, from the perspective of the long-term effects of Rut (incubating for 24 hours). Importantly, the changes of electrophysiological properties by Rut were the main cause of VA.
Assuntos
Potenciais de Ação , Arritmias Cardíacas/patologia , Canal de Potássio ERG1/antagonistas & inibidores , Alcaloides Indólicos/efeitos adversos , Síndrome do QT Longo/patologia , Quinazolinas/efeitos adversos , Vasodilatadores/efeitos adversos , Disfunção Ventricular/patologia , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Células Cultivadas , Fenômenos Eletrofisiológicos , Cobaias , Células HEK293 , Humanos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/metabolismo , Masculino , Disfunção Ventricular/induzido quimicamente , Disfunção Ventricular/metabolismoRESUMO
Grain size is a major determinant of grain weight, a key component of grain yield of rice. Here, we identified the grain size gene WIDE GRAIN 7 (WG7) from a T-DNA insertion mutant. The grain size of WG7 knockout mutants and WG7 overexpression lines indicated that WG7 is a positive regulator of grain size. WG7 encodes a cysteine-tryptophan (CW) domain-containing transcriptional activator. EMSAs and ChIP-qPCR assay confirmed that WG7 directly bound to the promoter of OsMADS1, a grain size gene, and thereby significantly activated its expression. Point mutations showed that the cis-element CATTTC motif in the promoter was the binding site of WG7. Compared with the wild-type, deletion mutants of the cis-element motif exhibited lower expression of OsMADS1 and produced narrower grains, implicating the requirement of this motif for WG7 function. ChIP-qPCR assays showed that WG7 enhanced histone H3K4me3 enrichment in the promoter of OsMADS1. WG7 underwent directional selection due to the poor fertility of the non-functional mutant. These findings demonstrated that WG7 upregulated OsMADS1 expression by directly binding to its promoter, enhanced histone H3K4me3 enrichment in the promoter and ultimately increased grain width. This study will enrich the knowledge concerning the regulatory network of grain size formation in rice.
Assuntos
Oryza/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Sítios de Ligação/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genéticaRESUMO
Spontaneous mutants are mainly obtained from tissue culture or natural occurrences in plants. The traditional strategy for identifying spontaneously mutated genes is to continuously backcross these mutants to another variety and develop a near-isogenic F2 population for map-based cloning or bulked segregant analysis. However, this strategy is time-consuming. Here, we have developed a new method to efficiently accelerate the identification process. The chemical mutagen ethyl methanesulfonate was first used to treat the wild type of the spontaneous mutants to induce thousands of neutral mutations. An induced individual without any statistically significant phenotypic changes which was compared with the wild type was chosen as the neutral mutant. The spontaneous mutant was then crossed with the neutral mutant to develop a pseudo-near-isogenic F2 population in which only the induced neutral mutations and the causal mutation were segregated in the genome. This population ensures that the variation of the mutated trait is controlled only by the spontaneously mutated gene. Finally, after sequencing the neutral mutant and the mutant-type DNA pool of the F2 population the spontaneous mutation will be identified quickly by bioinformatics analysis. Using this method, two spontaneously mutated genes were identified successfully. Therefore, the neutral mutant-bridging method efficiently identifies spontaneously mutated genes in rice, and its value in other plants is discussed.
Assuntos
Oryza/genética , Polimorfismo de Nucleotídeo Único/genética , Análise Mutacional de DNA , Metanossulfonato de Etila , Mutagênese , Mutagênicos , Mutação , FenótipoRESUMO
Tiller angle largely determines plant architecture, which in turn substantially influences crop production by affecting planting density. A recent study revealed that HEAT STRESS TRANSCRIPTION FACTOR2D (HSFA2D) acts upstream of LAZY1 (LA1) to regulate tiller angle establishment in rice (Oryza sativa). However, the mechanisms underlying transcriptional regulation of HSFA2D remain unknown. In this study, two class II homeodomain-Leu zipper genes, OsHOX1 and OsHOX28, were identified as positive regulators of tiller angle by affecting shoot gravitropism. OsHOX1 and OsHOX28 showed strong transcriptional suppressive activity in rice protoplasts and formed intricate self- and mutual-transcriptional negative feedback loops. Moreover, OsHOX1 and OsHOX28 bound to the pseudopalindromic sequence CAAT(C/G)ATTG within the promoter of HSFA2D, thus suppressing its expression. In contrast to HSFA2D and LA1, OsHOX1 and OsHOX28 attenuated lateral auxin transport, thus repressing the expression of WUSCHEL-RELATED HOMEOBOX 6 (WOX6) and WOX11 in the lower side of the shoot base of plants subjected to gravistimulation. Genetic analysis further confirmed that OsHOX1 and OsHOX28 act upstream of HSFA2D Additionally, both OsHOX1 and OsHOX28 inhibit the expression of multiple OsYUCCA genes and decrease auxin biosynthesis. Taken together, these results demonstrated that OsHOX1 and OsHOX28 regulate the local distribution of auxin, and thus tiller angle establishment, through suppression of the HSFA2D-LA1 pathway and reduction of endogenous auxin content. Our finding increases the knowledge concerning fine tuning of tiller angles to optimize plant architecture in rice.
Assuntos
Gravitropismo/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Oryza/genética , Brotos de Planta/crescimento & desenvolvimento , China , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fatores de Transcrição de Choque Térmico/genética , Brotos de Planta/anatomia & histologia , Brotos de Planta/genéticaRESUMO
Chalkiness is one of the key determinants of rice quality and is a highly undesirable trait for breeding and marketing. In this study, qWCR7, a major quantitative trait locus (QTL) of white-core rate (WCR), was genetically validated using a BC3F2 segregation population and further fine mapped using a near isogenic line (NIL) population, of which both were derived from a cross between the donor parent DL208 and the recurrent parent ZS97. qWCR7 was finally narrowed to a genomic interval of ~ 68 kb, containing seven annotated genes. Among those, two genes displayed markedly different expression levels in endosperm of NILs. Transcriptome analysis showed that the synthesis and accumulation of metabolites played a key role in chalkiness formation. The contents of storage components and expression levels of related genes were detected, suggesting that starch and storage protein were closely related to white-core trait. Our findings have laid the foundation of map-based cloning of qWCR7, which may have potential value in quality improvement during rice breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01260-x.
RESUMO
As a staple food for more than half of the world's population, the importance of rice is self-evident. Compared with ordinary rice, rice cultivars with superior eating quality and appearance quality are more popular with consumers due to their unique taste and ornamental value, even if their price is much higher. Appearance quality and CEQ (cooking and eating quality) are two very important aspects in the evaluation of rice quality. Here, we performed a genome-wide association study on floury endosperm in a diverse panel of 533 cultivated rice accessions. We identified a batch of potential floury genes and prioritize one (LOC_Os03g48060) for functional analyses. Two floury outer endosperm mutants (flo19-1 and flo19-2) were generated through editing LOC_Os03g48060 (named as FLO19 in this study), which encodes a class I glutamine amidotransferase. The different performances of the two mutants in various storage substances directly led to completely different changes in CEQ. The mutation of FLO19 gene caused the damage of carbon and nitrogen metabolism in rice, which affected the normal growth and development of rice, including decreased plant height and yield loss by decreased grain filling rate. Through haplotype analysis, we identified a haplotype of FLO19 that can improve both CEQ and appearance quality of rice, Hap2, which provides a selection target for rice quality improvement, especially for high-yield indica rice varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01226-z.
RESUMO
KEY MESSAGE: Knocking out OsVQ1 in rice released OsMPK6 for activation and in turn promoted H2O2 accumulation, which repressed the expression of flowering-promoting genes, thus delaying rice flowering but enhancing disease resistance. The valine-glutamine (VQ) protein family, which contains the conserved motif FxxxVQxLTG ("x" represents any amino acid), plays a crucial role in plant growth and immunity along with mitogen-activated protein kinase (MAPK) cascades. However, only a few rice VQ proteins have been functionally characterized, and the roles of the MAPK-VQ module in rice biological processes are not fully understood. Here, we investigated the role of OsVQ1 in rice disease resistance and the control of flowering time. The OsVQ1-knock out (KO) mutants exhibited increased resistance to Xanthomonas oryzae pathovars, accumulated high levels of hydrogen peroxide (H2O2), and showed a late flowering phenotype under natural long-day conditions, while the OsVQ1-overexpressing plants showed phenotypes similar to that of the wild type. Further studies revealed that OsVQ1 physically interacted with and inhibited OsMPK6 activity. In addition, OsVQ1 expression was downregulated by the pathogen-induced OsMPKK10.2-OsMPK6-OsWRKY45 cascade, suggesting a feedback loop between OsVQ1 and OsMPK6. Moreover, the OsVQ1-KO/osmpk6 double-mutant exhibited increased susceptibility to X. oryzae infection and showed an early flowering phenotype, which may partially be attributed to the reduced accumulation of H2O2 and the consequent up-expression of flowering-promoting genes. These results suggested that the OsVQ1-OsMPK6 module was involved in rice immunity and flowering.