Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7963): 57-62, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972685

RESUMO

Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry1,2. However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm2) devices on unfunctional SiO2-Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm2) interconnection3 and as a channel of large transistors (roughly 16.5 µm2) (refs. 4,5), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D-CMOS hybrid microchips for memristive applications-CMOS stands for complementary metal-oxide-semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm2. We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.

2.
Nature ; 582(7811): 234-239, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499652

RESUMO

On average, Peruvian individuals are among the shortest in the world1. Here we show that Native American ancestry is associated with reduced height in an ethnically diverse group of Peruvian individuals, and identify a population-specific, missense variant in the FBN1 gene (E1297G) that is significantly associated with lower height. Each copy of the minor allele (frequency of 4.7%) reduces height by 2.2 cm (4.4 cm in homozygous individuals). To our knowledge, this is the largest effect size known for a common height-associated variant. FBN1 encodes the extracellular matrix protein fibrillin 1, which is a major structural component of microfibrils. We observed less densely packed fibrillin-1-rich microfibrils with irregular edges in the skin of individuals who were homozygous for G1297 compared with individuals who were homozygous for E1297. Moreover, we show that the E1297G locus is under positive selection in non-African populations, and that the E1297 variant shows subtle evidence of positive selection specifically within the Peruvian population. This variant is also significantly more frequent in coastal Peruvian populations than in populations from the Andes or the Amazon, which suggests that short stature might be the result of adaptation to factors that are associated with the coastal environment in Peru.


Assuntos
Estatura/genética , Fibrilina-1/genética , Mutação de Sentido Incorreto , Seleção Genética , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Hereditariedade , Humanos , Indígenas Sul-Americanos/genética , Masculino , Microfibrilas/química , Microfibrilas/genética , Peru
3.
PLoS Comput Biol ; 20(5): e1011200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709852

RESUMO

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making.


Assuntos
COVID-19 , Previsões , Pandemias , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/transmissão , Humanos , Previsões/métodos , Estados Unidos/epidemiologia , Pandemias/estatística & dados numéricos , Biologia Computacional , Modelos Estatísticos
4.
J Biol Chem ; 299(3): 102962, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717079

RESUMO

Subgroup K avian leukosis virus (ALV-K) is a novel subgroup of ALV isolated from Chinese native chickens. As for a retrovirus, the interaction between its envelope protein and cellular receptor is a crucial step in ALV-K infection. Tva, a protein previously determined to be associated with vitamin B12/cobalamin uptake, has been identified as the receptor of ALV-K. However, the molecular mechanism underlying the interaction between Tva and the envelope protein of ALV-K remains unclear. In this study, we identified the C-terminal loop of the LDL-A module of Tva as the minimal functional domain that directly interacts with gp85, the surface component of the ALV-K envelope protein. Further point-mutation analysis revealed that E53, L55, H59, and G70, which are exposed on the surface of Tva and are spatially adjacent, are key residues for the binding of Tva and gp85 and facilitate the entry of ALV-K. Homology modeling analysis indicated that the substitution of these four residues did not significantly impact the Tva structure but impaired the interaction between Tva and gp85 of ALV-K. Importantly, the gene-edited DF-1 cell line with precisely substituted E53, L55, H59, and G70 was completely resistant to ALV-K infection and did not affect vitamin B12/cobalamin uptake. Collectively, these findings not only contribute to a better understanding of the mechanism of ALV-K entry into host cells but also provide an ideal gene-editing target for antiviral study.


Assuntos
Vírus da Leucose Aviária , Doenças das Aves Domésticas , Receptores Virais , Vitamina B 12 , Animais , Vírus da Leucose Aviária/genética , Galinhas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Complexo Vitamínico B , Vitamina B 12/metabolismo
5.
Anal Chem ; 96(5): 2052-2058, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38263605

RESUMO

Near-infrared fluorescence (NIRF) probes greatly facilitate in vivo imaging of various biologically important species. However, there are several significant limitations such as consuming washing steps, photobleaching, and low signal intensity. Herein, we synthesized fluorescent copper nanosheets templated with DNA scaffolds (DNS/CuNSs). We employ them and Cy5.5 of the fluorescence resonance energy transfer (FRET) system, which have a larger Stokes shift (∼12-fold) than the traditional NIRF dye Cy5.5. Based on their excellent fluorescence properties, we employ DNS/CuNSs-Cy5.5 for fluorescence probes in cancer cell imaging. Compared with the free Cy5.5 fluorescence probe, the novel fluorescence imaging probe implements wash-free imaging and exhibits enhanced anti-photobleaching ability (∼5.5-fold). Moreover, the FRET system constructed by DNS/CuNSs has a higher signal amplification ability (∼4.17-fold), which is more similar to that of Cu nanoclusters prepared with DNA nanomonomers as a template. This work provides a new idea for cancer cell MCF-7 imaging and is expected to promote the development of cancer cell fluorescence imaging.


Assuntos
Carbocianinas , Cobre , Neoplasias , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Imagem Óptica , DNA , Neoplasias/diagnóstico por imagem
6.
BMC Plant Biol ; 24(1): 453, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789944

RESUMO

BACKGROUND: Impatiens is an important genus with rich species of garden plants, and its distribution is extremely extensive, which is reflected in its diverse ecological environment. However, the specific mechanisms of Impatiens' adaptation to various environments and the mechanism related to lignin remain unclear. RESULTS: Three representative Impatiens species,Impatiens chlorosepala (wet, low degree of lignification), Impatiens uliginosa (aquatic, moderate degree of lignification) and Impatiens rubrostriata (terrestrial, high degree of lignification), were selected and analyzed for their anatomical structures, lignin content and composition, and lignin-related gene expression. There are significant differences in anatomical parameters among the stems of three Impatiens species, and the anatomical structure is consistent with the determination results of lignin content. Furthermore, the thickness of the xylem and cell walls, as well as the ratio of cell wall thickness to stem diameter have a strong correlation with lignin content. The anatomical structure and degree of lignification in Impatiens can be attributed to the plant's growth environment, morphology, and growth rate. Our analysis of lignin-related genes revealed a negative correlation between the MYB4 gene and lignin content. The MYB4 gene may control the lignin synthesis in Impatiens by controlling the structural genes involved in the lignin synthesis pathway, such as HCT, C3H, and COMT. Nonetheless, the regulation pathway differs between species of Impatiens. CONCLUSIONS: This study demonstrated consistency between the stem anatomy of Impatiens and the results obtained from lignin content and composition analyses. It is speculated that MYB4 negatively regulates the lignin synthesis in the stems of three Impatiens species by regulating the expression of structural genes, and its regulation mechanism appears to vary across different Impatiens species. This study analyses the variations among different Impatiens plants in diverse habitats, and can guide further molecular investigations of lignin biosynthesis in Impatiens.


Assuntos
Impatiens , Lignina , Caules de Planta , Lignina/metabolismo , Caules de Planta/genética , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Impatiens/genética , Impatiens/metabolismo , Impatiens/crescimento & desenvolvimento , Ecossistema , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Especificidade da Espécie , Genes de Plantas , Parede Celular/metabolismo , Parede Celular/genética
7.
Small ; : e2310087, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530052

RESUMO

Simultaneously improving electrochemical activity and stability is a long-term goal for water splitting. Herein, hierarchical N-doped carbon nanotubes on carbon nanowires derived from PPy are grown on carbon cloth, serving as a support for NiCo oxides/sulfides. The hierarchical electrodes annealed in N2 or H2/N2 display improved intrinsic activity and stability for hydrogen evolution reaction (HER) and glucose oxidation reaction. Compared with Pt/C||Ir/C in alkaline media, the glucose electrolysis assembled with electrodes exhibits a cell voltage of 1.38 V at 10 mA cm-2, durability for >12 h at 50 mA cm-2, and resistance to glucose/gluconic acid poisoning. In addition, electrocatalysts can also be applied in ethanol oxidation reactions. Systematic characterizations reveal the strong interactions between NiCo and N-doped carbon support-induced partial charge transfer at the interface and regulate the local electronic structure of active sites. Density functional theory calculations demonstrate that the synergistic effect between N-doped carbon supports, metallic NiCo, and NiCo oxides/sulfides optimize the adsorption energy of H2O and the H* free energy for HER. The energy barrier of the dehydrogenation of glucose effectively decreased. This work will attract attention to the role of metal-support interactions in enhancing the intrinsic activity and stability of electrocatalysts.

8.
J Transl Med ; 22(1): 551, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851695

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly heterogeneous, recurrent and aggressively invasive primary malignant brain tumor. The heterogeneity of GBM results in poor targeted therapy. Therefore, the aim of this study is to depict the cellular landscape of GBM and its peritumor from a single-cell perspective. Discovering new cell subtypes and biomarkers, and providing a theoretical basis for precision therapy. METHODS: We collected 8 tissue samples from 4 GBM patients to perform 10 × single-cell transcriptome sequencing. Quality control and filtering of data by Seurat package for clustering. Inferring copy number variations to identify malignant cells via the infercnv package. Functional enrichment analysis was performed by GSVA and clusterProfiler packages. STRING database and Cytoscape software were used to construct protein interaction networks. Inferring transcription factors by pySCENIC. Building cell differentiation trajectories via the monocle package. To infer intercellular communication networks by CellPhoneDB software. RESULTS: We observed that the tumor microenvironment (TME) varies among different locations and different GBM patients. We identified a proliferative cluster of oligodendrocytes with high expression of mitochondrial genes. We also identified two clusters of myeloid cells, one primarily located in the peritumor exhibiting an M1 phenotype with elevated TNFAIP8L3 expression, and another in the tumor and peritumor showing a proliferative tendency towards an M2 phenotype with increased DTL expression. We identified XIST, KCNH7, SYT1 and DIAPH3 as potential factors associated with the proliferation of malignant cells in GBM. CONCLUSIONS: These biomarkers and cell clusters we discovered may serve as targets for treatment. Targeted drugs developed against these biomarkers and cell clusters may enhance treatment efficacy, optimize immune therapy strategies, and improve the response rates of GBM patients to immunotherapy. Our findings provide a theoretical basis for the development of individualized treatment and precision medicine for GBM, which may be used to improve the survival of GBM patients.


Assuntos
Biomarcadores Tumorais , Glioblastoma , Análise de Célula Única , Microambiente Tumoral , Humanos , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Análise por Conglomerados , Mapas de Interação de Proteínas , Variações do Número de Cópias de DNA/genética , Agregação Celular , Perfilação da Expressão Gênica
9.
J Transl Med ; 22(1): 488, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773576

RESUMO

Ulcerative colitis (UC) is an idiopathic, chronic inflammatory condition of the colon, characterized by repeated attacks, a lack of effective treatment options, and significant physical and mental health complications for patients. The endoplasmic reticulum (ER) is a vital intracellular organelle in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is induced when the body is exposed to adverse external stimuli. Numerous studies have shown that ERS-induced apoptosis plays a vital role in the pathogenesis of UC. Mogroside V (MV), an active ingredient of Monk fruit, has demonstrated excellent anti-inflammatory and antioxidant effects. In this study, we investigated the therapeutic effects of MV on dextran sulfate sodium (DSS)-induced UC and its potential mechanisms based on ERS. The results showed that MV exerted a protective effect against DSS-induced UC in mice as reflected by reduced DAI scores, increased colon length, reduced histological scores of the colon, and levels of pro-inflammatory cytokines, as well as decreased intestinal permeability. In addition, the expression of ERS pathway including BIP, PERK, eIF2α, ATF4, CHOP, as well as the apoptosis-related protein including Caspase-12, Bcl-2 and Bax, was found to be elevated in UC. However, MV treatment significantly inhibited the UC and reversed the expression of inflammation signaling pathway including ERS and ERS-induced apoptosis. Additionally, the addition of tunicamycin (Tm), an ERS activator, significantly weakened the therapeutic effect of MV on UC in mice. These findings suggest that MV may be a therapeutic agent for the treatment of DSS-induced UC by inhibiting the activation of the ERS-apoptosis pathway, and may provide a novel avenue for the treatment of UC.


Assuntos
Apoptose , Colite Ulcerativa , Sulfato de Dextrana , Estresse do Retículo Endoplasmático , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Colo/patologia , Colo/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Camundongos , Citocinas/metabolismo , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
J Exp Bot ; 75(1): 468-482, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776224

RESUMO

Sessile growing plants are always vulnerable to microbial pathogen attacks throughout their lives. To fend off pathogen invasion, plants have evolved a sophisticated innate immune system that consists of cell surface receptors and intracellular receptors. Somatic embryogenesis receptor kinases (SERKs) belong to a small group of leucine-rich repeat receptor-like kinases (LRR-RLKs) that function as co-receptors regulating diverse physiological processes. GENRAL REGULATORY FACTOR (GRF) proteins play an important role in physiological signalling transduction. However, the function of GRF proteins in plant innate immune signalling remains elusive. Here, we identified a GRF gene, GauGRF7, that is expressed both constitutively and in response to fungal pathogen infection. Intriguingly, silencing of GRF7 compromised plant innate immunity, resulting in susceptibility to Verticillium dahliae infection. Both transgenic GauGRF7 cotton and transgenic GauGRF7 Arabidopsis lines enhanced the innate immune response to V. dahliae infection, leading to high expression of two helper NLRs (hNLR) genes (ADR1 and NRG1) and pathogenesis-related genes, and increased ROS production and salicylic acid level. Moreover, GauGRF7 interacted with GhSERK1, which positively regulated GRF7-mediated innate immune response in cotton and Arabidopsis. Our findings revealed the molecular mechanism of the GRF protein in plant immune signaling and offer potential opportunities for improving plant resistance to V. dahliae infection.


Assuntos
Arabidopsis , Verticillium , Resistência à Doença/genética , Verticillium/fisiologia , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Gossypium/genética , Gossypium/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
11.
Microb Pathog ; 192: 106701, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754566

RESUMO

Plaque-induced gingivitis is an inflammatory response in gingival tissues resulting from bacterial plaque accumulation at the gingival margin. Postbiotics can promote the proliferation of beneficial bacteria and optimise the state of microbiota in the oral cavity. In this study, we investigated the effect of inactivated Lacticaseibacillus paracasei Probio-01 on plaque-induced gingivitis and the dental plaque microbiota. A total of 32 healthy gingival participants (Group N, using blank toothpaste for 3 months) and 60 patients with plaque-induced gingivitis (30 in Group F, using inactivated Probio-01 toothpaste for 3 months, and 30 in Group B, using blank toothpaste for 3 months, respectively) were recruited. Clinical indices, which included bleeding on probing (BOP), gingival index (GI), and plaque index (PI), were used to assess the severity of gingivitis. Furthermore, 16SrDNA amplicon sequencing was used to explore changes in the gingival state and dental plaque microbiota in patients with plaque-induced gingivitis. The results showed that inactivated Probio-01 significantly reduced clinical indices of gingivitis, including BOP, GI, and PI, in participants with plaque-induced gingivitis and effectively relieved gingival inflammation, compared with that observed in the control group (group B). Inactivated Probio-01 did not significantly influence the diversity of dental plaque microbiota, but increased the relative abundance of dental plaque core bacteria, such as Leptotrichia and Fusobacterium (P < 0.05). Strong correlations were observed between the indices and abundance of dental plaque microbiota. Overall, the inactivated Probio-01 significantly reduced the clinical indices of gingivitis and effectively improved gingival inflammation in patients with plaque-induced gingivitis. The activity of inactivated Probio-01 against plaque-induced gingivitis was possibly mediated by its ability to regulate the dental plaque microbiota, as indicated by the close correlation between the plaque microbiota and clinical indices of gingivitis.


Assuntos
Placa Dentária , Gengivite , Microbiota , Cremes Dentais , Humanos , Gengivite/microbiologia , Placa Dentária/microbiologia , Feminino , Masculino , Microbiota/efeitos dos fármacos , Adulto , Cremes Dentais/uso terapêutico , Adulto Jovem , Índice Periodontal , Probióticos/administração & dosagem , Probióticos/uso terapêutico , RNA Ribossômico 16S/genética , Índice de Placa Dentária , Gengiva/microbiologia , Gengiva/patologia , Pessoa de Meia-Idade
12.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315678

RESUMO

BACKGROUND: Previous preclinical and human studies have shown that a high-fat ketogenic diet and ketone supplements (KS) are efficacious in reducing alcohol craving, alcohol consumption, and signs of alcohol withdrawal. However, the effects of KS on alcohol sensitivity are unknown. METHODS: In this single-blind, cross-over study, 10 healthy participants (3 females) were administered a single, oral dose of a KS (25 g of ketones from D-ß-hydroxybutyric acid and R-1,3-butanediol) or placebo 30 minutes before an oral alcohol dose (0.25 g/kg for women; 0.31 g/kg for men). Assessments of breath alcohol concentration and blood alcohol levels (BAL) and responses on the Drug Effect Questionnaire were repeatedly obtained over 180 minutes after alcohol consumption. In a parallel preclinical study, 8 Wistar rats (4 females) received an oral gavage of KS (0.42 g ketones/kg), water, or the sweetener allulose (0.58 g/kg) followed 15 minutes later by an oral alcohol dose (0.8 g/kg). BAL was monitored for 240 minutes after alcohol exposure. RESULTS: In humans, the intake of KS before alcohol significantly blunted breath alcohol concentration and BAL, reduced ratings of alcohol liking and wanting more, and increased disliking for alcohol. In rats, KS reduced BAL more than either allulose or water. CONCLUSION: KS altered physiological and subjective responses to alcohol in both humans and rats, and the effects were likely not mediated by the sweetener allulose present in the KS drink. Therefore, KS could potentially reduce the intoxicating effects of alcohol.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Masculino , Humanos , Ratos , Feminino , Animais , Estudos Cross-Over , Cetonas/farmacologia , Voluntários Saudáveis , Método Simples-Cego , Ratos Wistar , Etanol/farmacologia , Edulcorantes , Concentração Alcoólica no Sangue , Suplementos Nutricionais , Água
13.
Respir Res ; 25(1): 214, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762509

RESUMO

OBJECTIVES: Obstructive sleep apnea (OSA) is associated with abnormal glucose and lipid metabolism. However, whether there is an independent association between Sleep Apnea-Specific Hypoxic Burden (SASHB) and glycolipid metabolism disorders in patients with OSA is unknown. METHODS: We enrolled 2,173 participants with suspected OSA from January 2019 to July 2023 in this study. Polysomnographic variables, biochemical indicators, and physical measurements were collected from each participant. Multiple linear regression analyses were used to evaluate independent associations between SASHB, AHI, CT90 and glucose as well as lipid profile. Furthermore, logistic regressions were used to determine the odds ratios (ORs) for abnormal glucose and lipid metabolism across various SASHB, AHI, CT90 quartiles. RESULTS: The SASHB was independently associated with fasting blood glucose (FBG) (ß = 0.058, P = 0.016), fasting insulin (FIN) (ß = 0.073, P < 0.001), homeostasis model assessment of insulin resistance (HOMA-IR) (ß = 0.058, P = 0.011), total cholesterol (TC) (ß = 0.100, P < 0.001), total triglycerides (TG) (ß = 0.063, P = 0.011), low-density lipoprotein cholesterol (LDL-C) (ß = 0.075, P = 0.003), apolipoprotein A-I (apoA-I) (ß = 0.051, P = 0.049), apolipoprotein B (apoB) (ß = 0.136, P < 0.001), apolipoprotein E (apoE) (ß = 0.088, P < 0.001) after adjustments for confounding factors. Furthermore, the ORs for hyperinsulinemia across the higher SASHB quartiles were 1.527, 1.545, and 2.024 respectively, compared with the lowest quartile (P < 0.001 for a linear trend); the ORs for hyper-total cholesterolemia across the higher SASHB quartiles were 1.762, 1.998, and 2.708, compared with the lowest quartile (P < 0.001 for a linear trend) and the ORs for hyper-LDL cholesterolemia across the higher SASHB quartiles were 1.663, 1.695, and 2.316, compared with the lowest quartile (P < 0.001 for a linear trend). Notably, the ORs for hyper-triglyceridemia{1.471, 1.773, 2.099} and abnormal HOMA-IR{1.510, 1.492, 1.937} maintained a consistent trend across the SASHB quartiles. CONCLUSIONS: We found SASHB was independently associated with hyperinsulinemia, abnormal HOMA-IR, hyper-total cholesterolemia, hyper-triglyceridemia and hyper-LDL cholesterolemia in Chinese Han population. Further prospective studies are needed to confirm that SASHB can be used as a predictor of abnormal glycolipid metabolism disorders in patients with OSA. TRIAL REGISTRATION: ChiCTR1900025714 { http://www.chictr.org.cn/ }; Prospectively registered on 6 September 2019; China.


Assuntos
Hipóxia , Apneia Obstrutiva do Sono , Humanos , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Hipóxia/sangue , Hipóxia/epidemiologia , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/diagnóstico , Glicemia/metabolismo , Transtornos do Metabolismo dos Lipídeos/epidemiologia , Transtornos do Metabolismo dos Lipídeos/sangue , Transtornos do Metabolismo dos Lipídeos/diagnóstico , Idoso , Polissonografia , Metabolismo dos Lipídeos/fisiologia , Resistência à Insulina/fisiologia
14.
Eur J Nucl Med Mol Imaging ; 51(2): 434-442, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37789188

RESUMO

PURPOSE: Presynaptic dopaminergic positron emission tomography (PET) imaging serves as an essential tool in diagnosing and differentiating patients with suspected parkinsonism, including idiopathic Parkinson's disease (PD) and other neurodegenerative and non-neurodegenerative diseases. The PET tracers most commonly used at the present time mainly target dopamine transporters (DAT), aromatic amino acid decarboxylase (AADC), and vesicular monoamine type 2 (VMAT2). However, established standards for the imaging procedure and interpretation of presynaptic dopaminergic PET imaging are still lacking. The goal of this international consensus is to help nuclear medicine practitioners procedurally perform presynaptic dopaminergic PET imaging. METHOD: A multidisciplinary task group formed by experts from various countries discussed and approved the consensus for presynaptic dopaminergic PET imaging in parkinsonism, focusing on standardized recommendations, procedures, interpretation, and reporting. CONCLUSION: This international consensus and practice guideline will help to promote the standardized use of presynaptic dopaminergic PET imaging in parkinsonism. It will become an international standard for this purpose in clinical practice.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Dopamina/metabolismo , Consenso , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Doença de Parkinson/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo
15.
Anal Biochem ; : 115597, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969155

RESUMO

Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0×103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.

16.
Biotechnol Bioeng ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951956

RESUMO

In recent decades, biocatalysis has emerged as an important alternative to chemical catalysis in pharmaceutical manufacturing. Biocatalysis is attractive because enzymatic cascades can synthesize complex molecules with incredible selectivity, yield, and in an environmentally benign manner. Enzymes for pharmaceutical biocatalysis are typically used in their unpurified state, since it is time-consuming and cost-prohibitive to purify enzymes using conventional chromatographic processes at scale. However, impurities present in crude enzyme preparations can consume substrate, generate unwanted byproducts, as well as make the isolation of desired products more cumbersome. Hence, a facile, nonchromatographic purification method would greatly benefit pharmaceutical biocatalysis. To address this issue, here we have captured enzymes into membraneless compartments by fusing enzymes with an intrinsically disordered protein region, the RGG domain from LAF-1. The RGG domain can undergo liquid-liquid phase separation, forming liquid condensates triggered by changes in temperature or salt concentration. By centrifuging these liquid condensates, we have successfully purified enzyme-RGG fusions, resulting in significantly enhanced purity compared to cell lysate. Furthermore, we performed enzymatic reactions utilizing purified fusion proteins to assay enzyme activity. Results from the enzyme assays indicate that enzyme-RGG fusions purified by the centrifugation method retain enzymatic activity, with greatly reduced background activity compared to crude enzyme preparations. Our work focused on three different enzymes-a kinase, a phosphorylase, and an ATP-dependent ligase. The kinase and phosphorylase are components of the biocatalytic cascade for manufacturing molnupiravir, and we demonstrated facile co-purification of these two enzymes by co-phase separation. To conclude, enzyme capture by RGG tagging promises to overcome difficulties in bioseparations and biocatalysis for pharmaceutical synthesis.

17.
Langmuir ; 40(18): 9449-9461, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659090

RESUMO

Repairable superhydrophobic surfaces have promising application potential in many fields. However, so far, it is still a challenge to develop a superhydrophobic surface with repairability for multiple types of damage through a simple method. In this paper, a repairable superhydrophobic coating was obtained on various substrates by blade-coating mixtures of polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), and multiwalled carbon nanotubes (MWCNTs) modified with dopamine (PDA) and octadecylamine (ODA). The obtained coating has a good liquid-repellent property with a water contact angle above 150° and a water sliding angle of ∼6° and possesses an excellent absorbance (∼97%) in the wavelength range of 250-2500 nm. Due to its high absorbance, the coating displays an outstanding photothermal effect with a temperature rise of ∼65 °C under irradiation by 1.0 kW/m2 of simulated sunlight. Furthermore, after being degraded by multiple stimuli, including plasma treatment, acid/alkali/oil immersion, sand impact, and the icing-thawing cycle, the coating can recover superhydrophobicity via sunlight irradiation, demonstrating the good photothermal-induced repairability of the coating. It can be expected that the good water-repellent property, photothermal effect, and repairability give this coating a promising prospect in practical applications.

18.
Langmuir ; 40(10): 5151-5161, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422986

RESUMO

The inadequate hydrophobicity and the degradation in usage seriously hampered the applications of the existing antipollution flashover coatings. In this paper, a superhydrophobic polyurea coating with antipollution flashover ability was fabricated through chemically grafting the silica onto the chains of polyurea by utilizing silane coupling agent and hydrophobic modification. It is demonstrated that the coating exhibits outstanding antipollution flashover performances. Noteworthy, the surface pollution flashover voltage has been increased by 33.8% compared with the room temperature vulcanizing silicone rubber (RTV silicone rubber). In addition, the volume resistivity is above 1.0 × 1012 Ω·m, and the dielectric strength achieves to 28.85 kV/mm, which represents excellent insulating property. Furthermore, the superhydrophobic polyurea coating exhibits outstanding abrasion resistance, adhesion, acid-base resistance, and durability. As a result, it holds great promise for use in preventing pollution flashover in electrical insulators.

19.
Reprod Biomed Online ; 48(4): 103727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402677

RESUMO

RESEARCH QUESTION: Does type 1 diabetes mellitus (T1DM) affect reproductive health of female patients? What is the potential mechanism of reproductive dysfunction in female patients caused by T1DM? DESIGN: Preliminary assessment of serum levels of female hormones in women with or without T1DM. Then histological and immunological examinations were carried out on the pancreas, ovaries and uteri at different stages in non-obese diabetic (NOD) and Institute of Cancer Research (ICR) mice, as well as assessment of their fertility. A protein array was carried out to detect the changes in serum inflammatory cytokines. Furthermore, RNA-sequencing was used to identify the key abnormal genes/pathways in ovarian and uterine tissues of female NOD mice, which were further verified at the protein level. RESULTS: Testosterone levels were significantly increased (P = 0.0036) in female mice with T1DM. Increasing age in female NOD mice was accompanied by obvious lymphocyte infiltration in the pancreatic islets. Moreover, the levels of serum inflammatory factors in NOD mice were sharply increased with increasing age. The fertility of female NOD mice declined markedly, and most were capable of conceiving only once. Furthermore, ovarian and uterine morphology and function were severely impaired in NOD female mice. Additionally, ovarian and uterine tissues revealed that the differentially expressed genes were primarily enriched in metabolism, cytokine-receptor interactions and chemokine signalling pathways. CONCLUSION: T1DM exerts a substantial impairment on female reproductive health, leading to diminished fertility, potentially associated with immune disorders and alterations in energy metabolism.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Feminino , Animais , Camundongos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Camundongos Endogâmicos NOD , Pâncreas/metabolismo , Pâncreas/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Citocinas/metabolismo , Inflamação/metabolismo
20.
Crit Rev Food Sci Nutr ; : 1-23, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821105

RESUMO

Edible mushroom polysaccharides (EMPs) as a natural macromolecular carbohydrate have a very complex structure and composition. EMPs are considered ideal candidates for developing healthy products and functional foods and have received significant research attention due to their unique physiological activities such as immunomodulatory, anti-inflammatory, anti-tumor/cancer, gut microbiota regulation, metabolism improvement, and nervous system protection. The structure and monosaccharide composition of edible mushroom polysaccharides have an unknown relationship with their functional activity, which has not been widely studied. Therefore, we summarized the preparation techniques of EMPs and discussed the association between functional activity, preparation methods, structure and composition of EMPs, laying a theoretical foundation for the personalized nutritional achievements of EMP. We also establish the foundation for the further investigation and application of EMPs as novel functional foods and healthy products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA