Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 123: 96-115, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522017

RESUMO

Volatile organic compounds (VOCs) are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity, high volatility, and poor degradability. It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations. In China, clear directions and requirements for reduction of VOCs have been given in the "national plan on environmental improvement for the 13th Five-Year Plan period". Therefore, the development of efficient technologies for removal and recovery of VOCs is of great significance. Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions. Among them, adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects. This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs. Firstly, adsorption and membrane separation were found to be the research hotspots through bibliometric analysis. Then, a comprehensive understanding of their mechanisms, factors, and current application statuses was discussed. Finally, the challenges and perspectives in this emerging field were briefly highlighted.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Compostos Orgânicos Voláteis , Adsorção , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Poluentes Ambientais/análise , Compostos Orgânicos Voláteis/análise
2.
Small ; 18(30): e2201359, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768281

RESUMO

In this work, electrocatalytic upgrade of n-valeraldehyde to octane with higher activity and selectivity is achieved over Au single-atom catalysts (SACs)-NiMn2 O4 spinel synergetic composites. Experiments combined with density functional theory calculation collaboratively demonstrate that Au single-atoms occupy surface Ni2+ vacancies of NiMn2 O4 , which play a dominant role in n-valeraldehyde selective oxidation. A detailed investigation reveals that the initial n-valeraldehyde molecule preferentially adsorbs on the Mn tetrahedral site of NiMn2 O4 spinel synergetic structures, and the subsequent n-valeraldehyde molecule easily adsorbs on the Ni site. Specifically, Au single-atom surficial derivation over spinel lowers the adsorption energy (Eads ) of the initial n-valeraldehyde molecule, which will facilitate its adsorption on the Mn site of Au SACs-NiMn2 O4 . Furthermore, the single-atom Au surficial derivation not only alters the electronic structure of Au SACs-NiMn2 O4 but also lower the Eads of subsequent n-valeraldehyde molecule. Hence, the subsequent n-valeraldehyde molecules prefer adsorption on Au sites rather than Ni sites, and the process of two alkyl radicals originating from Mn-C4 H9 and Au-C4 H9 dimerization into an octane is accordingly accelerated. This work will provide an avenue for the rational design of SACs and supply a vital mechanism for understanding the electrocatalytic upgrade of n-valeraldehyde to octane.


Assuntos
Óxido de Magnésio , Octanos , Aldeídos , Óxido de Alumínio , Catálise
3.
BMC Plant Biol ; 21(1): 466, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645406

RESUMO

BACKGROUND: Phosphorus (P) is an essential macronutrient for plant growth that participates in a series of biological processes. Thus, P deficiency limits crop growth and yield. Although Stylosanthes guianensis (stylo) is an important tropical legume that displays adaptation to low phosphate (Pi) availability, its adaptive mechanisms remain largely unknown. RESULTS: In this study, differences in low-P stress tolerance were investigated using two stylo cultivars ('RY2' and 'RY5') that were grown in hydroponics. Results showed that cultivar RY2 was better adapted to Pi starvation than RY5, as reflected by lower values of relative decrease rates of growth parameters than RY5 at low-P stress, especially for the reduction of shoot and root dry weight. Furthermore, RY2 exhibited higher P acquisition efficiency than RY5 under the same P treatment, although P utilization efficiency was similar between the two cultivars. In addition, better root growth performance and higher leaf and root APase activities were observed with RY2 compared to RY5. Subsequent RNA-seq analysis revealed 8,348 genes that were differentially expressed under P deficient and sufficient conditions in RY2 roots, with many Pi starvation regulated genes associated with P metabolic process, protein modification process, transport and other metabolic processes. A group of differentially expressed genes (DEGs) involved in Pi uptake and Pi homeostasis were identified, such as genes encoding Pi transporter (PT), purple acid phosphatase (PAP), and multidrug and toxin extrusion (MATE). Furthermore, a variety of genes related to transcription factors and regulators involved in Pi signaling, including genes belonging to the PHOSPHATE STARVATION RESPONSE 1-like (PHR1), WRKY and the SYG1/PHO81/XPR1 (SPX) domain, were also regulated by P deficiency in stylo roots. CONCLUSIONS: This study reveals the possible mechanisms underlying the adaptation of stylo to P deficiency. The low-P tolerance in stylo is probably manifested through regulation of root growth, Pi acquisition and cellular Pi homeostasis as well as Pi signaling pathway. The identified genes involved in low-P tolerance can be potentially used to design the breeding strategy for developing P-efficient stylo cultivars to grow on acid soils in the tropics.


Assuntos
Adaptação Fisiológica/genética , Deficiências Nutricionais/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/genética , Fósforo/deficiência , Transcriptoma , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
4.
Phys Chem Chem Phys ; 23(23): 13276-13283, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34095924

RESUMO

The kinetics for the reactions of CH2OO and syn-CH3CHOO with acrolein, a typical unsaturated aldehyde in the atmosphere, were studied in a flash photolysis flow reactor using the OH laser-induced fluorescence (LIF) method. The bimolecular reaction rate coefficients were measured at temperatures ranging from 281 to 318 K, and pressures ranging from 5 to 200 Torr. No obvious dependence of the rate coefficients on pressure was observed under the current experimental conditions. Both reactions exhibit negative temperature-dependence, with an activation energy of (-1.70 ± 0.19) and (-1.47 ± 0.24) kcal mol-1 for CH2OO and syn-CH3CHOO reacting with acrolein, derived from the Arrhenius equation. At 298 K, the measured rate coefficients for CH2OO/syn-CH3CHOO + acrolein reactions are (1.63 ± 0.19) × 10-12 cm3 s-1 and (1.17 ± 0.16) × 10-13 cm3 s-1, respectively. The rate coefficient of the former reaction is in reasonable agreement with a recent theoretical result.

5.
BMC Genomics ; 21(1): 861, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272205

RESUMO

BACKGROUND: As a heavy metal, manganese (Mn) can be toxic to plants. Stylo (Stylosanthes) is an important tropical legume that exhibits tolerance to high levels of Mn. However, little is known about the adaptive responses of stylo to Mn toxicity. Thus, this study integrated both physiological and transcriptomic analyses of stylo subjected to Mn toxicity. RESULTS: Results showed that excess Mn treatments increased malondialdehyde (MDA) levels in leaves of stylo, resulting in the reduction of leaf chlorophyll concentrations and plant dry weight. In contrast, the activities of enzymes, such as peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO), were significantly increased in stylo leaves upon treatment with increasing Mn levels, particularly Mn levels greater than 400 µM. Transcriptome analysis revealed 2471 up-regulated and 1623 down-regulated genes in stylo leaves subjected to Mn toxicity. Among them, a set of excess Mn up-regulated genes, such as genes encoding PAL, cinnamyl-alcohol dehydrogenases (CADs), chalcone isomerase (CHI), chalcone synthase (CHS) and flavonol synthase (FLS), were enriched in secondary metabolic processes based on gene ontology (GO) analysis. Numerous genes associated with transcription factors (TFs), such as genes belonging to the C2H2 zinc finger transcription factor, WRKY and MYB families, were also regulated by Mn in stylo leaves. Furthermore, the C2H2 and MYB transcription factors were predicted to be involved in the transcriptional regulation of genes that participate in secondary metabolism in stylo during Mn exposure. Interestingly, the activation of secondary metabolism-related genes probably resulted in increased levels of secondary metabolites, including total phenols, flavonoids, tannins and anthocyanidins. CONCLUSIONS: Taken together, this study reveals the roles of secondary metabolism in the adaptive responses of stylo to Mn toxicity, which is probably regulated by specific transcription factors.


Assuntos
Fabaceae , Manganês , Fabaceae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Humanos , Manganês/toxicidade , Folhas de Planta , Metabolismo Secundário/genética , Transcriptoma
6.
Langmuir ; 36(33): 9709-9718, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32787058

RESUMO

A single semiconductor employed into photo(electro)catalysis is not sufficient for charge carrier separation. Designing a multiple heterojunction system is a practical method for photo(electro)catalysis. Herein, novel two-dimensional AgInS2/SnS2/RGO (AISR) photocatalysts with multiple junctions were prepared by a simple hydrothermal method. The synthesized AISR heterojunctions showed superior photoelectrochemical performance and photocatalytic degradation of norfloxacin, with a high degradation rate reaching 95%. More importantly, the toxicity of photocatalytic products decreased within the reaction process. High spatial separation efficiency of photogenerated electron-hole pairs was evidenced by optical and photoelectrochemical characterizations. Furthermore, a laser flash photolysis technique was carried on investigating the lifetime of the charge carrier of the fabricated dual heterostructures. In addition, sulfur and oxygen vacancies existed in AISR heterojunctions could largely constrain the recombination of electron-hole pairs. Density functional theory calculations were carried out to analyze the mechanism of photoinduced interfacial redox reactions, showing that reduced graphene oxide and AgInS2 act as electron and hole trappers in the photocatalytic reaction, respectively. Due to the interfacial electric field formed from AISR dual heterojunctions, the effective spatial charge separation and transfer contributed to the boosting photo(electro)catalytic performance.

7.
J Phys Chem A ; 124(30): 6125-6132, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32614580

RESUMO

Hydrofluoroolefins (HFOs, CxF2x+1CH═CH2) have great potential to replace hydrofluorocarbons (HFCs) as refrigerants. Here the kinetics for the reaction of syn-CH3CHOO with CF3CH═CH2 (HFO-1243zf), the simplest of HFOs, have been studied in a flash photolysis flow reactor at a total pressure of 50 Torr, by using the OH laser-induced fluorescence (LIF) method. The bimolecular reaction rate coefficients were measured at temperatures ranging from 283 to 318 K. A weak positive temperature dependence was observed, with an activation energy of 1.41 ± 0.12 kcal mol-1. At 298 K, the measured rate coefficient was (2.42 ± 0.51) × 10-14 cm3 s-1, in the vicinity of the previously reported upper limit value for the reaction of CH2OO with CF3CH═CH2.

8.
J Nanosci Nanotechnol ; 19(6): 3519-3527, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744780

RESUMO

Molybdenum disulfide (MoS2), as a typical layered transition metal sulfide, has been widely used in photocatalysis. Here, we report layered MoS2 nanosheet-coated TiO2 heterostructures that were prepared using a simple photo-assisted deposition method. The as-prepared samples were investigated in detail by using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Results demonstrated that the MoS2 nanosheets uniformly covered the outer surface of TiO2. The visible light-sensitive photocatalytic activity was evaluated by the removal of methylene blue (MB) and 2-chlorophenol (2-CP) in aqueous solution. Thus, the MoS2/TiO2 heterostructures exhibited improved photocatalytic degradation activity under visible light compared with the pure TiO2. Under visible light irradiation for 90 min, the degradation efficiencies of MB and 2-CP over the MoS2/TiO2 sample (sunlight irradiation time: 30 min) are as high as 93.6% and 70.6%, respectively. Furthermore, the corresponding mechanism of enhanced photocatalytic activity is proposed on the basis of the comprehensively investigated results from the radical trapping experiments, photoluminescence spectroscopy, and electron spin resonance analysis. The hole oxidation, hydroxyl radicals, and superoxide anion radicals act as the active species simultaneously in the photodegradation of the dye molecules. However, of these species, hole oxidation played the most important roles in the photocatalytic reaction.

9.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615142

RESUMO

Manganese (Mn) is an essential element for plant growth due to its participation in a series of physiological and metabolic processes. Mn is also considered a heavy metal that causes phytotoxicity when present in excess, disrupting photosynthesis and enzyme activity in plants. Thus, Mn toxicity is a major constraint limiting plant growth and production, especially in acid soils. To cope with Mn toxicity, plants have evolved a wide range of adaptive strategies to improve their growth under this stress. Mn tolerance mechanisms include activation of the antioxidant system, regulation of Mn uptake and homeostasis, and compartmentalization of Mn into subcellular compartments (e.g., vacuoles, endoplasmic reticulum, Golgi apparatus, and cell walls). In this regard, numerous genes are involved in specific pathways controlling Mn detoxification. Here, we summarize the recent advances in the mechanisms of Mn toxicity tolerance in plants and highlight the roles of genes responsible for Mn uptake, translocation, and distribution, contributing to Mn detoxification. We hope this review will provide a comprehensive understanding of the adaptive strategies of plants to Mn toxicity through gene regulation, which will aid in breeding crop varieties with Mn tolerance via genetic improvement approaches, enhancing the yield and quality of crops.


Assuntos
Transporte Biológico/efeitos dos fármacos , Manganês/toxicidade , Metais Pesados/toxicidade , Plantas/genética , Antioxidantes/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Homeostase/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Plantas/efeitos dos fármacos
10.
Chemistry ; 20(7): 1957-63, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24488956

RESUMO

Pharmaceutical antibiotics are not easily removed from water by conventional water-treatment technologies and have been recognized as new emerging pollutants. Herein, we report the synthesis of clickable azido periodic mesoporous organosilicas (PMOs) and their use as adsorbents for the adsorption of antibiotics. Ethane-bridged PMOs, functionalized with azido groups at different densities, were synthesized by the co-condensation of 1,2-bis(trimethoxysilyl)ethane (BTME) and 3-azidopropyltrimethoxysilane (AzPTMS), in the presence of nonionic-surfactant triblock-copolymer P123, in an acidic medium. Four different alkynes were conjugated to azide-terminated PMOs by means of an efficient click reaction. The clicked PMOs showed improved adsorption capacity (241 µg g(-1)) for antibiotics (ciprofloxacin hydrochloride) compared with azido-functionalized PMOs because of the enhanced π-π stacking interactions. These results indicate that click reactions can introduce multifunctional groups onto PMOs, thus demonstrating the great potential of PMOs for environmental applications.


Assuntos
Antibacterianos/isolamento & purificação , Compostos de Organossilício/química , Adsorção , Azidas/síntese química , Azidas/química , Química Click , Etano/análogos & derivados , Etano/síntese química , Etano/química , Compostos de Organossilício/síntese química , Porosidade , Compostos de Trimetilsilil/síntese química , Compostos de Trimetilsilil/química
11.
Langmuir ; 30(44): 13491-7, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25338810

RESUMO

Gold nanostars coated with cysteine (Cys-AuNSs) were successfully synthesized and used in SERS-based copper ions (Cu(2+)) detection in aqueous media. The strong coordination ability of cysteine (Cys) with Cu(2+) and the resulting Cys-AuNSs-Cu complex formation led to AuNSs aggregation and the drastic change in intensity and strength of COOH band spectra. The aggregation of AuNSs yielded distinct SERS signals, which exhibited remarkable sensitivity and selectivity for Cu(2+) over other metal ions. Using this SERS-based sensing method, we have achieved a practical detection limit of 10 µM. Such AuNSs-based detection could provide promising alternative choices for future SERS-active AuNSs application.

12.
J Colloid Interface Sci ; 660: 800-809, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277837

RESUMO

Electrocatalytic hydrogenation (ECH) reduction provides an environment-friendly alternative to conventional method for the upgrade of furfural to furfuryl alcohol. At present, exploring superior catalysts with high activity and selectivity, figuring out the reduction mechanism in aqueous alkaline environment are urgent. In this work, zinc cobalt bimetallic oxide (ZnMn2O4) with surface-derived Zn2+ vacancies supported by carbon nanofibers (d-ZnMn2O4-C) was fabricated. The d-ZnMn2O4-C exhibited excellent performance in electrocatalytic reduction of furfural, high furfuryl alcohol yield (49461.1 ± 228 µmol g-1) and Faradaic efficiency (95.5 ± 0.5 %) was obtained. In-depth research suggested that carbon nanofiber may strongly promoted the production of adsorbed hydrogen (Hads), and Zn2+ vacancies may significantly lowered the energy barrier of furfural reduction to furfuryl alcohol, the synergistic effect between carbon nanofiber and d-ZnMn2O4 probably facilitated the reaction between Hads and furfuryl alcohol radical, thereby promoting the formation of furfuryl alcohol. Furthermore, the reaction mechanism was clarified by inhibitor coating and isotope experiments, the results of which revealed that the conversion of furfural to furfuryl alcohol on d-ZnMn2O4-C followed both ECH and direct electroreduction mechanism.

13.
ACS Appl Mater Interfaces ; 16(5): 5735-5744, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38271590

RESUMO

Efficiently upgrading 5-hydroxymethylfurfural (HMF) into high-value-added products, such as 2,5-diformylfuran (DFF) and 2,5-furan dicarboxylic acid (FDCA), through a photocatalytic process by using solar energy has been incessantly pursued worldwide. Herein, a series of transition-metal (TM = Ni, Fe, Co, Cu) single atoms were supported on Ti4+αTi3+1-αO2-δ nanofibers (NFs) with certain defects (Ov), denoted as TM SAC-Ti4+αTi3+1-αO2-δ NFs (TM = Ni, Fe, Co, Cu), aiming to enhance the photocatalytic conversion of HMF. A super HMF conversion rate of 57% and a total yield of 1718.66 µmol g-1 h-1 (DFF and FDCA) surpassing that of the Ti4+αTi3+1-αO2-δ NFs by 1.6 and 2.1 times, respectively, are realized when TM is Co (Co SAC-Ti4+αTi3+1-αO2-δ NFs). Experiments combined with density functional theory calculation (DFT) demonstrate that the TM single atoms occupy the Ti site of Ti4+αTi3+1-αO2-δ NFs, which plays a dominant role in the photo-oxidation of HMF. Raman, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) characterizations confirm the strong electron local exchange interaction in TM SAC-Ti4+αTi3+1-αO2-δ NFs and demonstrate the substitution of Ti by the TM SACs. The projected density of states and charge density difference reveal that the strong interaction between metal-3d and O-2p orbitals forms Ti-O-TM bonds. The bonds are identified as the adsorption site, where TM single atoms on the surface of Ti4+αTi3+1-αO2-δ NFs reduce HMF molecule adsorption energy (Eads). Furthermore, the TM single atom modulates the electronic structure of TM SAC-Ti4+αTi3+1-αO2-δ NFs through electron transfer, leading to narrow band gaps of the photocatalysts and enhancing their photocatalytic performance. This study has uncovered a newer strategy for enhancing the photocatalytic attributes of semiconducting materials.

14.
Biotechnol Biofuels Bioprod ; 17(1): 86, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915078

RESUMO

BACKGROUND: Soybean (Glycine max) is a vital oil-producing crop. Augmenting oleic acid (OA) levels in soybean oil enhances its oxidative stability and health benefits, representing a key objective in soybean breeding. Pongamia (Pongamia pinnata), known for its abundant oil, OA, and flavonoid in the seeds, holds promise as a biofuel and medicinal plant. A comparative analysis of the lipid and flavonoid biosynthesis pathways in Pongamia and soybean seeds would facilitate the assessment of the potential value of Pongamia seeds and advance the genetic improvements of seed traits in both species. RESULTS: The study employed multi-omics analysis to systematically compare differences in metabolite accumulation and associated biosynthetic genes between Pongamia seeds and soybean seeds at the transcriptional, metabolic, and genomic levels. The results revealed that OA is the predominant free fatty acid in Pongamia seeds, being 8.3 times more abundant than in soybean seeds. Lipidomics unveiled a notably higher accumulation of triacylglycerols (TAGs) in Pongamia seeds compared to soybean seeds, with 23 TAG species containing OA. Subsequently, we identified orthologous groups (OGs) involved in lipid biosynthesis across 25 gene families in the genomes of Pongamia and soybean, and compared the expression levels of these OGs in the seeds of the two species. Among the OGs with expression levels in Pongamia seeds more than twice as high as in soybean seeds, we identified one fatty acyl-ACP thioesterase A (FATA) and two stearoyl-ACP desaturases (SADs), responsible for OA biosynthesis, along with two phospholipid:diacylglycerol acyltransferases (PDATs) and three acyl-CoA:diacylglycerol acyltransferases (DGATs), responsible for TAG biosynthesis. Furthermore, we observed a significantly higher content of the flavonoid formononetin in Pongamia seeds compared to soybean seeds, by over 2000-fold. This difference may be attributed to the tandem duplication expansions of 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferases (HI4'OMTs) in the Pongamia genome, which are responsible for the final step of formononetin biosynthesis, combined with their high expression levels in Pongamia seeds. CONCLUSIONS: This study extends beyond observations made in single-species research by offering novel insights into the molecular basis of differences in lipid and flavonoid biosynthetic pathways between Pongamia and soybean, from a cross-species comparative perspective.

15.
Chemistry ; 19(40): 13569-74, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23939704

RESUMO

One-dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye-sensitized solar cells (DSSCs) due to their superior electron-transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three-dimensional (3D) rutile-nanorod-based network structure directly grown on fluorine-doped tin oxide (FTO) substrates was developed by using a facile two-step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head-caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light-harvesting efficiency was increased due to an enhanced light-scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open-circuit voltage decay (OCVD) analyses confirmed that the electron-recombiantion rate was reduced on formation of the nanorod-based 3D network for fast electron transport. As a resut, a light-to-electricity conversion efficiency of 6.31% was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2 .

16.
Environ Sci Technol ; 47(9): 4528-35, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23528032

RESUMO

The mechanism of selective catalytic reduction of NOx by propene (C3H6-SCR) over the Cu/Ti0.7Zr0.3O2 catalyst was studied by in situ Fourier transform infrared (FTIR) spectroscopy and density functional theory (DFT) calculations. Especially, the formation and transformation of cyanide (-CN species) during the reaction was discussed. According to FTIR results, the excellent performance of the Cu/Ti0.7Zr0.3O2 catalyst in C3H6-SCR was attributed to the coexistence of two parallel pathways to produce N2 by the isocyanate (-NCO species) and -CN species intermediates. Besides the hydrolysis of the -NCO species, the reaction between the -CN species and nitrates and/or NO2 was also a crucial pathway for the NO reduction. On the basis of the DFT calculations on the energy of possible intermediates and transition states at the B3LYP/6-311 G (d, p) level of theory, the reaction channel of -CN species in the SCR reaction was identified and the role of -CN species as a crucial intermediate to generate N2 was also confirmed from the thermodynamics view. In combination of the FTIR and DFT results, a modified mechanism with two parallel pathways to produce N2 by the reaction of -NCO and -CN species over the Cu/Ti0.7Zr0.3O2 catalyst was proposed.


Assuntos
Alcenos/química , Cobre/química , Modelos Teóricos , Óxidos de Nitrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Titânio/química , Zircônio/química , Catálise
17.
ACS Appl Mater Interfaces ; 15(9): 11885-11894, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827641

RESUMO

Cobalt-manganese spinel catalysts performed unsatisfactory activity at low-temperature and narrow reaction temperature window, which greatly limited the application in NO reduction by CO. Herein, we synthesize a series of Cu-doped CoMn2O4 catalysts and apply to NO reduction by CO. The Cu0.3Co0.7Mn2O4 exhibited superior catalytic performance, reaching 100% NO conversion and 80% N2 selectivity at 250 °C. Detailed structural analysis showed that the introduced Cu replaces some Co in tetrahedral coordination to induce a strong synergistic effect between different metals. This endows the catalyst with the promotion of both electron transfer and oxygen vacancy generation on the catalyst surface. Importantly, the reaction mechanism and pathway were further revealed by in situ diffusion Fourier transform infrared spectroscopy (DRIFTS) and density functional theory (DFT) calculations. The results indicated that the cycle of oxygen vacancy mainly determines the catalytic activity of NO reduction by CO. Notably, Cu doping significantly lowered the energy barrier of the rate-determining step (*CO + O → *Ov + CO2), facilitating the desorption of the CO2 and exposing the active sites for efficient NO reduction with CO. This work offers an effective way for designing the catalyst in NO reduction by CO and provides a reference for exploring the catalytic mechanism of the reaction.

18.
J Hazard Mater ; 457: 131743, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37270957

RESUMO

Microplastic pollution has emerged as a pressing environmental issue of global concern due to its detrimental effects on the environment and ecology. Restricted to their characters of complex composition, it is a great challenge to propose a more cost-effective approach to achieve highly selective conversion of microplastic into add-value products. Here we demonstrate an upcycling strategy for converting PET microplastics into added-value chemicals (formate, terephthalic acid and K2SO4). PET is initially hydrolyzed in KOH solution to produce terephthalic acid and ethylene glycol, which is subsequently used as an electrolyte to produce formate at the anode. Meanwhile, the cathode undergoes hydrogen evolution reaction to produce H2. Preliminary techno-economic analysis suggests that this strategy has certain economic feasibility and a novel Mn0.1Ni0.9Co2O4-δ rod-shaped fiber (RSFs) catalyst we synthesized can achieve high Faradaic efficiency (> 95%) at 1.42 V vs. RHE with optimistic formate productivity. The high catalytic performance can be attributed to the doping of Mn changing the electronic structure and reducing the metal-oxygen covalency of NiCo2O4, reducing the lattice oxygen oxidation in spinel oxide OER electrocatalysts. This work not only put forward an electrocatalytic strategy for PET microplastic upcycling but also guides the design of electrocatalysts with excellent performance.

19.
Front Plant Sci ; 14: 1146398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251779

RESUMO

Pigeon pea is a perennial leguminous plant that is widely cultivated as a forage and pharmaceutical plant in subtropical and tropical areas, especially in artificial grasslands. Higher seed shattering is one of the most important factors in potentially increasing the seed yield of pigeon pea. Advance technology is necessary to increase the seed yield of pigeon pea. Through 2 consecutive years of field observations, we found that fertile tiller number was the key component of the seed yield of pigeon pea due to the direct effect of fertile tiller number per plant (0.364) on pigeon pea seed yield was the highest. Multiplex morphology, histology, and cytological and hydrolytic enzyme activity analysis showed that shatter-susceptible and shatter-resistant pigeon peas possessed an abscission layer at the same time (10 DAF); however, abscission layer cells dissolved earlier in shattering-susceptible pigeon pea (15 DAF), which led to the tearing of the abscission layer. The number of vascular bundle cells and vascular bundle area were the most significant negative factors (p< 0.01) affecting seed shattering. Cellulase and polygalacturonase were involved in the dehiscence process. In addition, we inferred that larger vascular bundle tissues and cells in the ventral suture of seed pods could effectively resist the dehiscence pressure of the abscission layer. This study provides foundation for further molecular studies to increase the seed yield of pigeon pea.

20.
ACS Appl Mater Interfaces ; 15(10): 12915-12923, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863000

RESUMO

Dichloromethane (CH2Cl2) hydrodechlorination to methane (CH4) is a promising approach to remove the halogenated contaminants and generate clean energy. In this work, rod-like nanostructured CuCo2O4 spinels with rich oxygen vacancies are designed for highly efficient electrochemical reduction dechlorination of dichloromethane. Microscopy characterizations revealed that the special rod-like nanostructure and rich oxygen vacancies can efficiently enhance surface area, electronic/ionic transport, and expose more active sites. The experimental tests demonstrated that CuCo2O4-3 with rod-like nanostructures outperformed other morphology of CuCo2O4 spinel nanostructures in catalytic activity and product selectivity. The highest methane production of 148.84 µmol in 4 h with a Faradaic efficiency of 21.61% at -2.94 V (vs SCE) is shown. Furthermore, the density function theory proved oxygen vacancies significantly decreased the energy barrier to promote the catalyst in the reaction and Ov-Cu was the main active site in dichloromethane hydrodechlorination. This work explores a promising way to synthesize the highly efficient electrocatalysts, which may be an effective catalyst for dichloromethane hydrodechlorination to methane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA