Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 723: 150179, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38820623

RESUMO

Lymphedema, a prevalent, multifaceted, and chronic ailment, is mainly managed through physical manipulation and suffers from a lack of specific pharmacological treatments. Secondary lymphedema is mainly caused by impaired lymphatic drainage. Therapeutic lymphangiogenesis is a promising strategy in the treatment of lymphedema. Andrographolide, a natural product from Andrographis paniculata, is unknown whether andrographolide promotes lymphangiogenesis to improve secondary lymphedema. By using the murine tail lymphedema model, we demonstrated that andrographolide can reduce the thickness of subcutaneous tissue in the mice's tail and enhance lymphatic drainage. Moreover, immunofluorescence staining showed that the number of capillary lymphatic vessels in the ANDRO25 group was significantly more than that in the ANDRO50 and Model groups. Near-infrared lymphography images showed that highlighted sciatic lymph nodes could be seen in the ANDRO25 and ANDRO50 groups. In vitro, andrographolide could promote the proliferation and migration of LEC. In conclusion, andrographolide enhanced the recovery of lymphatic vessels, and promoted lymphatic drainage in the murine tail lymphedema model by promoting the proliferation of lymphatic endothelial cells, thereby reducing the symptoms of lymphedema. This suggested andrographolide may be used as a potential therapeutic drug or medical food ingredient to help patients with secondary lymphedema.


Assuntos
Diterpenos , Linfangiogênese , Vasos Linfáticos , Linfedema , Diterpenos/farmacologia , Animais , Linfangiogênese/efeitos dos fármacos , Linfedema/tratamento farmacológico , Linfedema/patologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/patologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos
2.
J Agric Food Chem ; 72(17): 9599-9610, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646697

RESUMO

In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 µg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 µg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 µg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 µg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 µM), which was obviously more potent than those of boscalid (IC50 = 7.92 µM) and fluxapyroxad (IC50 = 6.15 µM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.


Assuntos
Botrytis , Fungicidas Industriais , Oximas , Doenças das Plantas , Pirazóis , Rhizoctonia , Succinato Desidrogenase , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Pirazóis/farmacologia , Pirazóis/química , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Oximas/química , Oximas/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
3.
J Hazard Mater ; 387: 122005, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31918052

RESUMO

Solidification/Stabilization (S/S) is an effective way to immobilize toxic metals in contaminated soil. However, utilization of ordinary Portland cement (PC) in this process has raised environmental concerns owing to the high carbon footprint from PC manufacturing and the risk of toxic element leaching in the long term. Hence there is an urgent need to seek for "green" immobilization approaches with long-term stability. In this study, a clay-based material, humic acid modified montmorillonite (HA-Mont) was applied to a Cd and Hg contaminated soil. Field emission scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (FESEM/EDS), N2 adsorption-desorption, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses were performed to investigate the characteristics of this material. Compared to the soil without any treatment, dosage of 5 % HA-Mont could effectively reduce Cd and Hg concentrations by 94.1 % and 93.0 %, respectively and to below the regulatory limits in the TCLP (Toxicity Characteristic Leaching Procedure) leachates. Compared to the soil treated with virgin montmorillonite, HA modification resulted in the reduction of leachate concentrations of Cd and Hg by 69.5 % and 65.9 %, respectively. Long-term immobilization performance of the HA-Mont treatment was examined using a quantitative accelerated ageing method. In order to examine the ageing features, a novel method based on conditional probability was developed, and the reliability of HA-Mont immobilization was found to fit the Weibull model well, as the ageing rate of immobilization effect increased with time. After 120 years of ageing, reliability of both metals could still remain above 0.95. Cd concentration in TCLP leachates at 120th year could still remain below the regulatory limit (294 µg/L vs 1000 µg/L), while Hg concentration reached the regulatory limit of 200 µg/L in 96th year. This is the first attempt developing a green S/S method of Cd and Hg contaminated soil using HA-Mont and examining the long-term ageing characteristics of the stabilized soil using a probability-based approach.

4.
J Mater Chem A Mater ; 6: 9229-9236, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30147937

RESUMO

A greener and sustainable pathway to the assembly of Fe, Cu -based adsorbent is described using Virginia creeper (Parthenocissus quinquefolia) leaf extracts in presence of oxalic acid which avoids the use of toxic chemicals. Characterization of the synthesized mixed Fe, Cu oxides are carried out by SEM, TEM, XRD, FT-IR, XPS, and BET techniques; SEM and TEM results disclosed particle size ranging from 160 nm to 1 µm in presence of varying oxalic acid amounts of 0 and 0.1 mol/L. The X-ray photoelectron spectroscopy studies revealed that the sample comprised of Fe, Cu-based hybrid oxides and oxalates. The ensuing results from altered operational parameters namely initial pH, initial malachite green (MG) concentration, the sample dosage and the reaction temperature suggest that the MG adsorption capacity of synthesized materials could be well structured by simply varying the amount of oxalic acid. The optimal sample (S3 sample) has a remarkably high maximum adsorptive capacity (~1399 mg/g) for aqueous MG removal at 303 K and natural pH (~ 6.58), which is superior to recently documented sorbents. The results demonstrate that the adsorption is spontaneous (i.e., ∆G < 0) via an endothermic process wherein the synthesized adsorbent displayed excellent characteristics: 1) maintained a high adsorption capacity under a wide range of pH conditions; 2) remained chemically stable under ambient storage environments to allow for extended stowage; and 3) portrayed high reusability with no waning effect after 4 adsorption/desorption cycles.

5.
J Control Release ; 283: 200-213, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885418

RESUMO

The removal of recalcitrant organic pollutants in groundwater is a challenge being faced around the world. Achieving effective long-term remediation of contaminated aquifers faces a variety of significant issues such as back diffusion, tailing, and rebound. In recent years, some researchers have proposed the use of controlled release materials (CRMs) as a new approach to counteracting such issues. The novelty of CRMs lies in that they release their active products slowly, over prolonged periods of time, in order to sustain in situ treatments and long-term effectiveness. Here we review the main constituents of CRMs, analyze their production, characterization, and applications, with a focus on reaction mechanisms, effectiveness, and secondary effects. This review shows that the reactive components of CRMs most commonly involve either: (i) chemical oxidants to treat contaminants such as TCE, PCE, BTEX, and 1,4-Dioxane; (ii) sources of dissolved oxygen to stimulate aerobic biodegradation of contaminants such as BTEX and 1,4-Dioxane; or, (iii) substrates that stimulate reductive dechlorination of contaminants such as TCE and 1,2-DCA. It was found that in some studies, CRMs provided sustained delivery of CRM treatment reagents over several years, and achieved complete contaminant removal. However, lower removal rates were apparent in other cases, which may be ascribed to insufficient dispersion in the subsurface. There are a relatively limited number of field-scale applications of CRMs in contaminated land remediation. Those conducted to date suggest that CRMs could prove to be an effective future remediation strategy. Lessons learned from field applications, suggestions for future research directions, and conclusions are put forward in this review.


Assuntos
Preparações de Ação Retardada/química , Recuperação e Remediação Ambiental/métodos , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Água Subterrânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA