Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37886839

RESUMO

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Assuntos
Traumatismos Cardíacos , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Humanos , Camundongos , Animais Recém-Nascidos , Proliferação de Células , Coração , Traumatismos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos , Miócitos Cardíacos/metabolismo , Regeneração , Versicanas/genética , Versicanas/metabolismo
2.
Cancer Sci ; 115(6): 1851-1865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581120

RESUMO

Aberrant expression of forkhead box transcription factor 1 (FOXM1) plays critical roles in a variety of human malignancies and predicts poor prognosis. However, little is known about the crosstalk between FOXM1 and long noncoding RNAs (lncRNAs) in tumorigenesis. The present study identifies a previously uncharacterized lncRNA XLOC_008672 in gastric cancer (GC), which is regulated by FOXM1 and possesses multiple copies of tandem repetitive sequences. LncRNA microarrays are used to screen differentially expressed lncRNAs in FOXM1 knockdown GC cells, and then the highest fold downregulation lncRNA XLOC_008672 is screened out. Sequence analysis reveals that the new lncRNA contains 62 copies of 37-bp tandem repeats. It is transcriptionally activated by FOXM1 and functions as a downstream effector of FOXM1 in GC cells through in vitro and in vivo functional assays. Elevated expression of XLOC_008672 is found in GC tissues and indicates worse prognosis. Mechanistically, XLOC_008672 can bind to small nuclear ribonucleoprotein polypeptide A (SNRPA), thereby enhancing mRNA stability of Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and, consequently, facilitating GC cell proliferation and migration. Our study discovers a new uncharacterized lncRNA XLOC_008672 involved in GC carcinogenesis and progression. Targeting FOXM1/XLOC_008672/SNRPA/G3BP1 signaling axis might be a promising therapeutic strategy for GC.


Assuntos
Carcinogênese , Proliferação de Células , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas com Motivo de Reconhecimento de RNA , RNA Longo não Codificante , Neoplasias Gástricas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Linhagem Celular Tumoral , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Carcinogênese/genética , Proliferação de Células/genética , Animais , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Movimento Celular/genética , Sequências de Repetição em Tandem/genética , Prognóstico , Camundongos Nus , Masculino , Feminino , DNA Helicases , RNA Helicases
3.
Cell Mol Life Sci ; 80(7): 186, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344704

RESUMO

Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.


Assuntos
Proteína Morfogenética Óssea 7 , Miócitos Cardíacos , Animais , Humanos , Camundongos , Proteína Morfogenética Óssea 7/metabolismo , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Mol Med ; 29(1): 64, 2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-37183261

RESUMO

BACKGROUND: Low-grade gliomas (LGG) are a type of brain tumor that can be lethal, and it is essential to identify genes that are correlated with patient prognosis. In this study, we aimed to use CRISPR-cas9 screening data to identify key signaling pathways and develop a genetic signature associated with high-risk, low-grade glioma patients. METHODS: The study used CRISPR-cas9 screening data to identify essential genes correlated with cell survival in LGG. We used RNA-seq data to identify differentially expressed genes (DEGs) related to cell viability. Moreover, we used the least absolute shrinkage and selection operator (LASSO) method to construct a genetic signature for predicting overall survival in patients. We performed enrichment analysis to identify pathways mediated by DEGs, overlapping genes, and genes shared in the Weighted correlation network analysis (WGCNA). Finally, the study used western blot, qRT-PCR, and IHC to detect the expression of hub genes from signature in clinical samples. RESULTS: The study identified 145 overexpressed oncogenes in low-grade gliomas using the TCGA database. These genes were intersected with lethal genes identified in the CRISPR-cas9 screening data from Depmap database, which are enriched in Hippo pathways. A total of 19 genes were used to construct a genetic signature, and the Hippo signaling pathway was found to be the predominantly enriched pathway. The signature effectively distinguished between low- and high-risk patients, with high-risk patients showing a shorter overall survival duration. Differences in hub gene expression were found in different clinical samples, with the protein and mRNA expression of REP65 being significantly up-regulated in tumor cells. The study suggests that the Hippo signaling pathway may be a critical regulator of viability and tumor proliferation and therefore is an innovative new target for treating cancerous brain tumors, including low-grade gliomas. CONCLUSION: Our study identified a novel genetic signature associated with high-risk, LGG patients. We found that the Hippo signaling pathway was significantly enriched in this signature, indicating that it may be a critical regulator of tumor viability and proliferation in LGG. Targeting the Hippo pathway could be an innovative new strategy for treating LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Via de Sinalização Hippo , Sistemas CRISPR-Cas/genética , Genes Letais , Glioma/genética , Oncogenes , Neoplasias Encefálicas/genética
5.
Biol Proced Online ; 25(1): 6, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870954

RESUMO

BACKGROUND: YTHDF2 is one of important readers of N6-methyladenosine (m6A) modification on RNA. Growing evidence implicates that YTHDF2 takes an indispensable part in the regulation of tumorigenesis and metastasis in different cancers, but its biological functions and underlying mechanisms remain elusive in gastric cancer (GC). AIM: To investigate the clinical relevance and biological function of YTHDF2 in GC. RESULTS: Compared with matched normal stomach tissues, YTHDF2 expression was markedly decreased in gastric cancer tissues. The expression level of YTHDF2 was inversely associated with gastric cancer patients' tumor size, AJCC classification and prognosis. Functionally, YTHDF2 reduction facilitated gastric cancer cell growth and migration in vitro and in vivo, whereas YTHDF2 overexpression exhibited opposite phenotypes. Mechanistically, YTHDF2 enhanced expression of PPP2CA, the catalytic subunit of PP2A (Protein phosphatase 2A), in an m6A-independent manner, and silencing of PPP2CA antagonized the anti-tumor effects caused by overexpression of YTHDF2 in GC cells. CONCLUSION: These findings demonstrate that YTHDF2 is down-regulated in GC and its down-regulation promotes GC progression via a possible mechanism involving PPP2CA expression, suggesting that YTHDF2 may be a hopeful biomarker for diagnosis and an unrevealed treatment target for GC.

6.
J Transl Med ; 21(1): 25, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639643

RESUMO

BACKGROUND: Circulating soluble programmed death ligand 1 (sPD-L1) can negatively regulate T-cell function and serve as a prognostic or predictive marker in a variety of cancers. However, rare studies have evaluated the potential roles of sPD-L1, and no study has estimated its predictive value for the efficacy of immune treatment in colorectal cancer (CRC). METHODS: Plasma samples from 192 CRC patients were used to estimate correlations between clinicopathological features and sPD-L1, secreted PD-L1 (secPD-L1) and exosomal PD-L1 (exoPD-L1). Baseline and posttreatment sPD-L1 levels were also investigated in 55 patients with metastatic CRC (mCRC) treated with chemotherapy ± targeted therapy and 40 patients with proficient mismatch repair (pMMR) mCRC treated with combination immunotherapy. Both sPD-L1 and secPD-L1 were quantified by enzyme-linked immunosorbent assay, while exoPD-L1 was analyzed using flow cytometry. RESULTS: secPD-L1 was the major component and positively correlated with sPD-L1 in CRC, while exoPD-L1 was almost undetectable. Higher levels of sPD-L1 were detected in patients with distant metastasis, especially those with distant lymph node metastasis and tissue combined positive score (CPS) instead of tumor proportion score (TPS). Chemotherapy or targeted therapy did not significantly impact sPD-L1 concentration. Progressive disease on combination immunotherapy was associated with an increase in sPD-L1 level, whereas no significant change was observed in patients with durable clinical benefit. CONCLUSION: sPD-L1 mainly consisted of secPD-L1, and its level was higher in patients with distant metastasis, especially distant lymph node metastasis and positive CPS. sPD-L1 is a potential dynamic marker to identify rapid progression on combination immunotherapy and avoid ineffective treatment for pMMR CRC.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo , Humanos , Metástase Linfática , Reparo de Erro de Pareamento de DNA , Biomarcadores Tumorais , Imunoterapia
7.
Mol Reprod Dev ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054257

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine disorder, affecting women of child-bearing age, and the incidence rate is growing and assuming epidemic proportions. The etiology of PCOS remains unknown and there is no cure. Some animal models for PCOS have been established which have enhanced our understanding of the underlying mechanisms, but omics data for revealing PCOS pathogenesis and for drug discovery are still lacking. In the present study, proteomics analysis was used to construct a protein profile of the ovaries in a PCOS mouse model. The result showed a clear difference in protein profile between the PCOS and control group, with 495 upregulated proteins and 404 downregulated proteins in the PCOS group. The GO term and KEGG pathway analyses of differentially expressed proteins mainly showed involvement in lipid metabolism, oxidative stress, and immune response, which are consistent with pathological characteristics of PCOS in terms of abnormal metabolism, endocrine disorders, chronic inflammation and imbalance between oxidant and antioxidant levels. Also, we found that inflammatory responses were activated in the PCOS ovarium, while lipid biosynthetic process peroxisome, and bile secretion were inhibited. In addition, we found some alteration in unexpected pathways, such as glyoxylate and dicarboxylate metabolism, which should be investigated. The present study makes an important contribution to the current lack of PCOS ovarian proteomic data and provides an important reference for research and development of effective drugs and treatments for PCOS.

8.
BMC Cancer ; 23(1): 1105, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957631

RESUMO

BACKGROUND: Ubiquitin-specific protease 32 (USP32) is a highly conserved gene that promotes cancer progression. However, its role in hepatocellular carcinoma (HCC) is not well understood. The aim of this project is to explore the clinical significance and functions of USP32 in HCC. METHODS: The expression of USP32 in HCC was evaluated using data from TCGA, GEO, TISCH, tissue microarray, and human HCC samples from our hospital. Survival analysis, PPI analysis and GSEA analysis were performed to evaluate USP32-related clinical significance, key molecules and enrichment pathways. Using the ssGSEA algorithm and TIMER, we investigated the relationships between USP32 and immune infiltrates in the TME. Univariate and multivariate Cox regression analyses were then used to identify key USP32-related immunomodulators and constructed a USP32-related immune prognostic model. Finally, CCK8, transwell and colony formation assays of HCC cells were performed and an HCC nude mouse model was established to verify the oncogenic role of USP32. RESULTS: USP32 is overexpressed in HCC and its expression is an independent predictive factor for outcomes of HCC patients. USP32 is associated with pathways related to cell behaviors and cancer signaling, and its expression is significantly correlated with the infiltration of immune cells in the TME. We also successfully constructed a USP32-related immune prognostic model using 5 genes. Wet experiments confirmed that knockdown of USP32 could repress the proliferation, colony formation and migration of HCC cells in vitro and inhibit tumor growth in vivo. CONCLUSION: USP32 is highly expressed in HCC and closely correlates with the TME of HCC. It is a potential target for improving the efficacy of chemotherapy and developing new strategies for targeted therapy and immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Algoritmos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Processos Neoplásicos , Ubiquitina Tiolesterase/genética
9.
Scand J Gastroenterol ; 58(4): 429-434, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36256445

RESUMO

BACKGROUND: Endoscopic submucosal dissection (ESD) is an effective treatment for colorectal tumors. However, lesions that cannot be lifted after submucosal injection are not indication for ESD. This is because the procedure is difficult, and the lesions are often considered as tumor invasion or submucosal fibrosis. The aims of this study are to evaluate the efficacy and safety of ESD for non-lifting lesions and to analyze the causes of non-lifting phenomenon. METHODS: This retrospective study included 29 patients with non-lifting colon lesions resected by ESD from February 2018 to September 2021. Cases were observed for demographics, endoscopic findings, treatment outcomes, adverse events and endoscopic follow-up. We studied the pathological features of lesions to explore the reasons for non-lifting. RESULTS: Among 29 cases of non-lifting lesions, 20 lesions (69.0%) were 30 mm in diameter or larger. Most of lesions (96.6%) were non-lifting in center, and only one lesions (3.4%) had non-lifting of one side. The en bloc and curative resection rates of ESD were 100 and 86.2%, respectively. There was one (3.4%) delayed bleeding, no perforations and other complications. No tumor recurrence occurred during the follow-up period. For pathological features, 16 (55.2%) non-lifting lesions had submucosal fibrosis and only 4 cases (13.8%) had deep submucosal invasion. There were 9 cases (31.0%) of non-lifting lesions due to musculo-fibrous of muscularis propria anomaly (MMPA). CONCLUSION: MMPA is another reason for non-lifting signs besides invasive carcinomas and submucosal fibrosis. ESD should be considered in patients with large non-lifting adenoma instead of surgery.


Assuntos
Neoplasias Colorretais , Fibrose Oral Submucosa , Humanos , Estudos Retrospectivos , Recidiva Local de Neoplasia , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia
10.
Sensors (Basel) ; 23(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514812

RESUMO

With the accelerated growth of the UAV industry, researchers are paying close attention to the flight safety of UAVs. When a UAV loses its GPS signal or encounters unusual conditions, it must perform an emergency landing. Therefore, real-time recognition of emergency landing zones on the ground is an important research topic. This paper employs a semantic segmentation approach for recognizing emergency landing zones. First, we created a dataset of UAV aerial images, denoted as UAV-City. A total of 600 UAV aerial images were densely annotated with 12 semantic categories. Given the complex backgrounds, diverse categories, and small UAV aerial image targets, we propose the STDC-CT real-time semantic segmentation network for UAV recognition of emergency landing zones. The STDC-CT network is composed of three branches: detail guidance, small object attention extractor, and multi-scale contextual information. The fusion of detailed and contextual information branches is guided by small object attention. We conducted extensive experiments on the UAV-City, Cityscapes, and UAVid datasets to demonstrate that the STDC-CT method is superior for attaining a balance between segmentation accuracy and inference speed. Our method improves the segmentation accuracy of small objects and achieves 76.5% mIoU on the Cityscapes test set at 122.6 FPS, 68.4% mIoU on the UAVid test set, and 67.3% mIoU on the UAV-City dataset at 196.8 FPS on an NVIDIA RTX 2080Ti GPU. Finally, we deployed the STDC-CT model on Jetson TX2 for testing in a real-world environment, attaining real-time semantic segmentation with an average inference speed of 58.32 ms per image.

11.
Phys Rev Lett ; 129(5): 053903, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960552

RESUMO

The gain and loss in photonic lattices provide possibilities for many functional phenomena. In this Letter, we consider photonic topological insulators with different types of gain-loss domain walls, which will break the translational symmetry of the lattices. A method is proposed to construct effective Hamiltonians, which accurately describe states and the corresponding energies at the domain walls for different types of photonic topological insulators and domain walls with arbitrary shapes. We also consider domain-induced higher-order topological states in two-dimensional non-Hermitian Aubry-André-Harper lattices and use our method to explain such phenomena successfully. Our results reveal the physics in photonic topological insulators with gain-loss domain walls, which provides advanced pathways for manipulation of non-Hermitian topological states in photonic systems.

12.
Gastrointest Endosc ; 95(6): 1138-1146.e2, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34973966

RESUMO

BACKGROUND AND AIMS: The quality of EGD is a prerequisite for a high detection rate of upper GI lesions, especially early gastric cancer. Our previous study showed that an artificial intelligence system, named intelligent detection endoscopic assistant (IDEA), could help to monitor blind spots and provide an operation score during EGD. Here, we verified the effectiveness of IDEA to help evaluate the quality of EGD in a large-scale multicenter trial. METHODS: Patients undergoing EGD in 12 hospitals were consecutively enrolled. All hospitals were equipped with IDEA developed using deep convolutional neural networks and long short-term memory. Patients were examined by EGD, and the results were recorded by IDEA. The primary outcome was the detection rate of upper GI cancer. Secondary outcomes were part scores, total scores, and endoscopic procedure time, which were analyzed by IDEA. RESULTS: A total of 17,787 patients were recruited. The total detection rate of cancer-positive cases was 1.50%, ranging from .60% to 3.94% in each hospital. The total detection rate of early cancer-positive cases was .36%, ranging from .00% to 1.58% in each hospital. The average total score analyzed by IDEA ranged from 64.87 ± 16.87 to 83.50 ± 9.57 in each hospital. The cancer detection rate in each hospital was positively correlated with total score (r = .775, P = .003). Similarly, the early cancer detection rate was positively correlated with total score (r = .756, P = .004). CONCLUSIONS: This multicenter trial confirmed that the quality of the EGD result is positively correlated with the detection rate of cancer, which can be monitored by IDEA. (Clinical trial registration number: ChiCTR2000029001.).


Assuntos
Neoplasias Gastrointestinais , Neoplasias Gástricas , Inteligência Artificial , Endoscopia , Endoscopia do Sistema Digestório/métodos , Humanos , Redes Neurais de Computação , Neoplasias Gástricas/diagnóstico
13.
Nutr Cancer ; 74(2): 640-649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33715541

RESUMO

Lentinan can lead to apoptosis of tumor cells and improve immune function. However, limited research focused on the immunogenic death regulation mechanism of lentinan on mouse H22 cells. The study aimed to explore the effect of Lentinan on the expression of immunogenic death-related proteins in mice H22 cells. MTT method was used to detect and evaluate the effect of 200-1000 µg/mL lentinan on the survival rate of H22 cells after 24 h, 48 h, and 72 h, respectively. Flow cytometry was employed to collect the apoptotic rate of lentinan at different concentrations (200-800µg/mL) on H22 cells for 48 h, and obtain the apoptotic rate of 600 µg/mL lentinan at different times (12-72 h). The effect of Lentinan on the expression of H22 Immunogenic Cell Death proteins was analyzed by ELISA and HPLC-MS afterward. Results suggest that lentinan cytotoxic and pro-apoptotic have a concentration-dependent manner with the H22 cells. Moreover, the rate of apoptosis increased significantly (P < 0.05) in 24 h. Lentinan can induce the expression of Calreticulin(CRT), High mobility protein 1(HMGB1), ATP and Heat shock protein 70 (HSP70) .Therefore, the antitumor effect of lentinan may be related to the regulation of immunogenic death-related protein expression, which was beneficial to the future development of liver cancer vaccines.


Assuntos
Antineoplásicos , Morte Celular Imunogênica , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Lentinano/farmacologia , Camundongos
14.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891086

RESUMO

Inspection robots are widely used in the field of smart grid monitoring in substations, and partial discharge (PD) is an important sign of the insulation state of equipment. PD direction of arrival (DOA) algorithms using conventional beam forming and time difference of arrival (TDOA) require large-scale antenna arrays and high computational complexity, making them difficult to implement on inspection robots. To address this problem, a novel directional multiple signal classification (Dir-MUSIC) algorithm for PD direction finding based on signal strength is proposed, and a miniaturized directional spiral antenna circular array is designed in this paper. First, the Dir-MUSIC algorithm is derived based on the array manifold characteristics. This method uses strength intensity information rather than the TDOA information, which could reduce the computational difficulty and the requirement of array size. Second, the effects of signal-to-noise ratio (SNR) and array manifold error on the performance of the algorithm are discussed through simulations in detail. Then, according to the positioning requirements, the antenna array and its arrangement are developed and optimized. Simulation results suggested that the algorithm has reliable direction-finding performance in the form of six elements. Finally, the effectiveness of the algorithm is tested by using the designed spiral circular array in real scenarios. The experimental results show that the PD direction-finding error is 3.39°, which meets the need for partial discharge DOA estimation using inspection robots in substations.

15.
Entropy (Basel) ; 24(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420460

RESUMO

In this paper, the distributed optimal control method is used to study the cooperative formation of heterogeneous multi-agents in the air-ground environment. The considered system consists of an unmanned aerial vehicle (UAV) and an unmanned ground vehicle (UGV). The optimal control theory is introduced into the formation control protocol, the distributed optimal formation control protocol is designed, and the stability is verified by graph theory. Furthermore, the cooperative optimal formation control protocol is designed, and the stability is analyzed using a block Kronecker product and matrix transformation theory. Through the comparison of simulation results, the introduction of optimal control theory shortens the formation time of the system and accelerates the convergence speed of the system.

16.
J Cell Mol Med ; 25(2): 1024-1034, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277798

RESUMO

Tetraspanin CD63 has been widely implicated in tumour progression of human malignancies. However, its role in the tumorigenesis and metastasis of hepatocellular carcinoma (HCC) remains unclear yet. In the present study, we aimed to investigate the specific function and underlying mechanisms of CD63 in HCC progression. CD63 expression in HCC tissues was detected using immunohistochemistry and quantitative real-time PCR analyses; effects of CD63 on HCC cell proliferation and migration were investigated by CCK-8 assay, colony formation assay, transwell assay and a xenograft model of nude mice. RNA-sequencing, bioinformatics analysis, dual-luciferase reporter assay and Western blot analysis were performed to explore the underlying molecular mechanisms. Results of our experiments showed that CD63 expression was frequently reduced in HCC tissues compared with adjacent normal tissues, and decreased CD63 expression was significantly associated with larger tumour size, distant site metastasis and higher tumour stages of HCC. Overexpression of CD63 inhibited HCC cell proliferation and migration, whereas knockdown of CD63 promoted these phenotypes. IL-6, IL-27 and STAT3 activity was regulated by CD63, and blockade of STAT3 activation impaired the promotive effects of CD63 knockdown on HCC cell growth and migration. Our findings identified a novel CD63-IL-6/IL-27-STAT3 axis in the development of HCC and provided a potential target for the diagnosis and treatment of this disease.


Assuntos
Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fator de Transcrição STAT3/metabolismo , Tetraspanina 30/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Transdução de Sinais
17.
Circulation ; 142(10): 967-982, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32600062

RESUMO

BACKGROUND: A key cause of the high mortality of cardiovascular diseases is the cardiomyocyte inability to renew after cardiac injury. As a promising strategy to supplement functional myocytes for cardiac repair, there is a pressing need to understand the cellular and molecular mechanisms of heart regeneration. METHODS: Seven genetic mouse lines were used: global OSM (oncostatin M) knockout, monocyte-/macrophage-specific OSM deletion, cardiomyocyte-specific lines, including OSM receptor deletion, gp130 (glycoprotein 130) deletion, gp130 activation, and Yap (yes-associated protein) ablation with gp130 activation mice. A series of molecular signaling experiments, including RNA sequencing, immunostaining, coimmunoprecipitation, and imaging flow cytometry, were conducted. Two models of cardiac injury, apical resection and myocardial infarction operation, were performed in neonatal, juvenile, and adult mice. Heart regeneration and cardiac function were evaluated by Masson staining and echocardiography, respectively. Gene recombinant adenovirus-associated virus was constructed and infected myocardial-infarcted mice as a gene therapy. RESULTS: OSM was identified by RNA sequencing as a key upstream regulator of cardiomyocyte proliferation during neonatal heart regeneration in mice. Cardiomyocyte proliferation and heart regeneration were suspended in neonatal mice after cardiac injury when OSM was conditionally knockout in macrophages. The cardiomyocyte-specific deficiency of the OSM receptor heterodimers, OSM receptor and gp130, individually in cardiomyocytes reduced myocyte proliferation and neonatal heart regeneration. Conditional activation of gp130 in cardiomyocytes promoted cardiomyocyte proliferation and heart regeneration in juvenile and adult mice. Using RNA sequencing and functional screening, we found that Src mediated gp130-triggered cardiomyocyte proliferation by activating Yap (yes-associated protein) with Y357 phosphorylation independently of the Hippo pathway. Cardiomyocyte-specific deletion of Yap in Myh6-gp130ACT mice blocked the effect of gp130 activation-induced heart regeneration in juvenile mice. Gene therapy with adenovirus-associated virus encoding constitutively activated gp130 promoted cardiomyocyte proliferation and heart regeneration in adult mice after myocardial infarction. CONCLUSIONS: Macrophage recruitment is essential for heart regeneration through the secretion of OSM, which promotes cardiomyocyte proliferation. As the coreceptor of OSM, gp130 activation is sufficient to promote cardiomyocyte proliferation by activating Yap through Src during heart regeneration. gp130 is a potential therapeutic target to improve heart regeneration after cardiac injury.


Assuntos
Receptor gp130 de Citocina/metabolismo , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Regeneração , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Receptor gp130 de Citocina/genética , Camundongos , Camundongos Knockout , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas de Sinalização YAP
18.
J Cell Mol Med ; 24(11): 6500-6504, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32343038

RESUMO

The neonatal heart completely regenerates after apical resection (AR), providing a desirable research model to study the mechanism of cardiac regeneration and cardiomyocyte proliferation. However, AR-induced neonatal heart regenerative phenomenon is controversial due to the variation of operative details in different laboratories. Here, we provide an optimized AR operation procedure with stable regeneration and high survival rate by achieving heart exposure, normalizing myocardium cut-offs, and reducing operation duration. We also established a whole-heart-slice approach to estimate the myocardial regeneration after the AR operation, which ensures no false-negative/positive results. The combination of the optimized AR operation and the whole-heart-slice analysis provides a stable system to study neonatal heart regeneration and cardiomyocyte proliferation in situ.


Assuntos
Animais Recém-Nascidos/fisiologia , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Regeneração/fisiologia , Cicatrização/fisiologia , Animais , Proliferação de Células/fisiologia , Traumatismos Cardíacos/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Taxa de Sobrevida
19.
Phys Rev Lett ; 125(21): 213902, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274980

RESUMO

We demonstrate a novel path to localizing topologically nontrivial photonic edge modes along their propagation direction. Our approach is based on the near-conservation of the photonic valley degree of freedom associated with valley-polarized edge states. When the edge state is reflected from a judiciously oriented mirror, its optical energy is localized at the mirror surface because of an extended time delay required for valley index flipping. The degree of energy localization at the resulting topology-controlled photonic cavity is determined by the valley-flipping time, which is in turn controlled by the geometry of the mirror. Intuitive analytic descriptions of the "leaky" and closed topology-controlled photonic cavities are presented, and two specific designs-one for the microwave and the other for the optical spectral ranges-are proposed.

20.
Genome ; 63(6): 307-317, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32308030

RESUMO

The Himalayan marmot (Marmota himalayana), a natural host and transmitter of plague, is also susceptible to the hepadnavirus infection. To reveal the genetic basis of the hepadnavirus susceptibility and the immune response to plague, we systematically characterized the features of immune genes in Himalayan marmot with those of human and mouse. We found that the entire major histocompatibility complex region and the hepatitis B virus pathway genes of the Himalayan marmot were conserved with those of humans. A Trim (tripartite motif) gene cluster involved in immune response and antiviral activity displays dynamic evolution, which is reflected by the duplication of Trim5 and the absence of Trim22 and Trim34. Three key regions of Ntcp, which is critical for hepatitis B virus entry, had high identity among seven species of Marmota. Moreover, we observed a severe alveolar hemorrhage, inflammatory infiltrate in the infected lungs and livers from Himalayan marmots after infection of EV76, a live attenuated Yersinia pestis strain. Lots of immune genes were remarkably up-regulated, which several hub genes Il2rγ, Tra29, and Nlrp7 are placed at the center of the gene network. These findings suggest that Himalayan marmot is a potential animal model for study on the hepadnavirus and plague infection.


Assuntos
Hepadnaviridae/genética , Imunidade Inata/genética , Marmota/virologia , Peste/genética , Animais , Modelos Animais de Doenças , Hepadnaviridae/patogenicidade , Humanos , Fígado/virologia , Marmota/genética , Camundongos , Peste/virologia , Proteínas com Motivo Tripartido , Yersinia pestis/genética , Yersinia pestis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA