RESUMO
The development of embryo sacs is crucial for seed production in plants, but the genetic basis regulating the meiotic crossover formation in the macrospore and microspore mother cells remains largely unclear. Here, we report the characterization of a spontaneous rice female sterile variation 1 mutant (fsv1) that showed severe embryo sacs abortion with low seed-setting rate. Through map-based cloning and functional analyses, we isolated the causal gene of fsv1, OsMLH3 encoding a MutL-homolog 3 protein, an ortholog of HvMLH3 in barley and AtMLH3 in Arabidopsis. OsMLH3 and OsMLH1 (MutL-homolog 1) interact to form a heterodimer (MutLγ) to promote crossover formation in the macrospore and microspore mother cells and development of functional megaspore during meiosis, defective OsMLH3 or OsMLH1 in fsv1 and CRISPR/Cas9-based knockout lines results in reduced type I crossover and bivalent frequency. The fsv1 and OsMLH3-knockout lines are valuable germplasms for development of female sterile restorer lines for mechanized seed production of hybrid rice.
Assuntos
Troca Genética , Oryza , Fertilidade , Meiose/genética , Proteínas MutL/genética , Oryza/genéticaRESUMO
Citric acid (CA) can regulate the balance of anions and cations in plants, and improve their resistance to heavy metals. It is not clear if foliar application with CA has any effect on migration of Cd and Mn in rice plant. In this work, a low-Cd-accumulating indica rice line (P7) and a high-Cd-accumulating line (HZ) were used to investigate the influence of CA on the transport of Cd and Mn as well as amino acid metabolism in grains. Content of Cd in grains and other organs increased with the increase of Cd content (0.1-2.4 mg kg-1) in soil, while decreased with the foliar application with CA. With the increase of Cd content in rice grains, the content of most amino acids in HZ, P7, HZ+CA and P7 + CA showed an obvious decline trend. Foliar application with CA efficiently raised the Mn:Cd ratio in grains and nodes of both HZ and P7. Meanwhile, the expression levels of OsNramp2, 3 and 5 in panicles were efficiently enhanced by CA application when plants grew in soil with Cd content of 0.6-2.4 mg kg-1. The increasing effect of CA on the content of 4 amino acids (i.e., Glu, Phe, Thr and Ala) in grains was related to varieties and Cd pollution. These results indicate that foliar application with CA can regulate the transport of Cd and Mn in the opposite directions in tissues and inhibit Cd accumulation in grains by enhancing expression of OsNRAMP 2, 3 or 5 and triggering the defense response of some amino acids in Cd-contaminated environment.
Assuntos
Aminoácidos/metabolismo , Cádmio/metabolismo , Ácido Cítrico/farmacologia , Grão Comestível/fisiologia , Manganês/metabolismo , Substâncias Protetoras/farmacologia , Transporte Biológico , Poluição Ambiental , Metais Pesados/análise , Oryza/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/análiseRESUMO
The future of rice breeding will likely be built on the basis of the further utilization of heterosis between elite cultivars and genetic resources from distant subspecies of rice. Previous studies have proved that exogenous genomic DNA transformation methods can be used to transfer genetic information from distant relatives (donor) into cultivated rice (recipient). However, the mechanism underlying this form of genetic transfer is poorly characterized, and the genes that cause the phenotypic changes in these variants are typically difficult to identify. This study examined YVB, a stable variant line with greatly improved grain quality traits that was derived from an indica variety (V20B) by transferring genomic DNA of O.minuta through the "spike-stalk injection method (SIM)". We used restriction-site associated DNA sequencing technology (RAD-seq) to evaluate a population of BC1F5 backcross lines (YVB × V20B); the RAD-seq data were used to construct a genetic linkage map with high-density SNPs for use in association analysis exploring genotype-phenotype relationships at the whole-genome level. A total of 17 quantitative trait loci (QTLs) for rice quality traits were mapped to chromosomes 3, 5, 6, 8, and 9. 8 major QTLs controlling different phenotypic variations were mapped to the same region of chromosome 5. This region contained the GS5 gene for grain weight and the qSW5/GW5 gene for grain width. This study provides new resources and insights into the molecular mechanisms of grain trait phenotypic variation and the transmission of genetic information via the introduction of genomic DNA to a distantly related crop relative species.
Assuntos
Grão Comestível/genética , Oryza/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Cruzamento/métodos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Testes Genéticos/métodos , Genótipo , Endogamia/métodos , Fenótipo , Análise de Sequência de DNA/métodosRESUMO
The transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are two current genome editing technologies. Here, we compare and analyze the characteristics of the targeted mutations mediated by these two systems, such as efficiency, type, position, time, and genetic patterns. Both the TALEN and CRISPR/Cas9 systems can induce site-specific mutations in T0 rice plants effectively, but CRISPR/Cas9 is more effective. The major mutation type in both systems is the short insertion/deletion(InDel) mutation within 10 base pairs: deletions ranging from 1 to 10 bps are more often in TALEN, and 1bp insertions are more often in CRISPR/Cas9. Moreover, double-strand breaks (DSBs) generated by CRISPR/Cas9 are more precise than TALEN. In addition, DSBs could be repaired by the homologous recombination at a low frequency, causing DNA fragment duplication mutations. In some cases, the DNA fragments between the two close targets are deleted or inverted, and the mutation efficiency does not positively correlatewith the mutation efficiency of each target. Mutagenesis mediated by the TALEN or CRISPR/Cas9 system can occur as early as in transformed callus cells, and less frequently in somatic cells. Consequently, four different mutation types are formed, including homozygous, heterozygous, bi-allelic and chimeric mutations, with bi-allelic mutations having the highest rate and chimeric mutations having the lowest rate. All, except chimeric mutations, can descend stably into the next generation.
Assuntos
Genoma de Planta/genética , Mutagênese/genética , Mutação/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodosRESUMO
Genetic diversity within parental lines of hybrid rice is the foundation of heterosis utilization and yield improvement. Previous studies have suggested that genetic diversity was narrow in cytoplasmic male sterile (CMS/A line) and restorer lines (R line) for Three-line hybrid rice. However, the genetic diversity within maintainer lines (B line), especially at a genome-wide scale, remains largely unknown. In the present study, we performed deep re-sequencing of the elite maintainer line V20B (Oryza sativa L. ssp. indica). We then compared the V20B sequence with the 93-11 (Oryza sativa L. ssp. indica) genome sequence. 112.1 × 106 paired-end reads (PE reads) were generated with approximately 30-fold sequencing depth. The V20B PE reads uniquely covered 87.6 % of the 93-11 genome sequence. Overall, a total of 660,778 single-nucleotide polymorphism (SNPs) and 266,301 insertions and deletions (InDels) were identified, yielding an average of 2.1 SNPs/kb and 0.8 InDels/kb. Genome-wide distribution of the SNPs and InDels was non-random, and variation-rich and variation-poor regions were identified in all chromosomes. A total of 20,562 non-synonymous SNPs spanning 8,854 genes were annotated. Our results identified DNA polymorphisms at the genome-wide scale and uncovered the high level of genetic diversity between V20B and 93-11. Our results proved that next-generation sequencing technologies can be powerful tools to study genome-wide DNA polymorphisms, to query genetic diversity, and to enable molecular improvement efforts with Three-line hybrid rice. Further, our results also indicated that 93-11 could be used as core germplasm for the improvement of wild-abortive CMS lines and the maintainer lines.
Assuntos
Evolução Molecular , Oryza/genética , Polimorfismo Genético , Mapeamento Cromossômico , DNA de Plantas , Genoma de Planta , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização Genética , Mutação INDEL , Anotação de Sequência Molecular , Fenótipo , Plantas Geneticamente ModificadasRESUMO
OsNRAMP5 is a transporter responsible for cadmium (Cd) and manganese (Mn) uptake and root-to-shoot translocation of Mn in rice plants. Knockout of OsNRAMP5 is regarded as an effective approach to minimize Cd uptake and accumulation in rice. It is vital to evaluate the effects of knocking out OsNRAMP5 on Cd and Mn accumulation, as well as Cd tolerance of rice plants in response to varying environmental Cd concentrations, and to uncover the underlying mechanism, which until now, has remained largely unexplored. This study showed that knockout of OsNRAMP5 decreased Cd uptake, but simultaneously facilitated Cd translocation from roots to shoots. The effect of OsNRAMP5 knockout on reducing root Cd uptake weakened, however its effect on improving root-to-shoot Cd translocation was constant with increasing environmental Cd concentrations. As a result, its mutation dramatically reduced Cd accumulation in shoots under low and moderate Cd stress, but inversely increased that under high Cd conditions. Interestingly, Cd tolerance of its knockout mutants was persistently enhanced, irrespective of lower or higher Cd concentrations in shoots, compared with that of wild-type plants. Knockout of OsNRAMP5 mitigated Cd toxicity by dramatically diminishing Cd uptake at low or moderate external Cd concentrations. Remarkably, its knockout effectively complemented deficient mineral nutrients in shoots, thereby indirectly enhancing rice tolerance to severe Cd stress. Additionally, its mutation conferred preferential delivery of Mn to young leaves and grains. These results have important implications for the application of the OsNRAMP5 mutation in mitigating Cd toxicity and lowering the risk of excessive Cd accumulation in rice grains.
Assuntos
Oryza , Transporte Biológico , Cádmio/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/farmacologia , Oryza/metabolismo , Raízes de Plantas/metabolismoRESUMO
Cadmium (Cd)-contaminated rice is a serious issue affecting food safety. Understanding the molecular regulatory mechanisms of Cd accumulation in rice grains is crucial to minimizing Cd concentrations in grains. We identified a member of the low-affinity cation transporter family, OsLCT2 in rice. It was a membrane protein. OsLCT2 was expressed in all tissues of the elongation and maturation zones in roots, with the strongest expression in pericycle and stele cells adjacent to the xylem. When grown in Cd-contaminated paddy soils, rice plants overexpressing OsLCT2 significantly reduced Cd concentrations in the straw and grains. Hydroponic experiment demonstrated its overexpression decreased the rate of Cd translocation from roots to shoots, and reduced Cd concentrations in xylem sap and in shoots of rice. Moreover, its overexpression increased Zn concentrations in roots by up-regulating the expression of OsZIP9, a gene responsible for Zn uptake. Overexpression of OsLCT2 reduces Cd accumulation in rice shoots and grains by limiting the amounts of Cd loaded into the xylem and restricting Cd translocation from roots to shoots of rice. Thus, OsLCT2 is a promising genetic resource to be engineered to reduce Cd accumulation in rice grains.
RESUMO
In this study, we compared the physicochemical properties and starch structures of hybrid rice varieties with similar apparent amylose content but different taste values. In addition to the apparent amylose content, gel permeation chromatography analysis showed that the higher proportions of amylopectin short chains and relatively lower proportions of amylopectin long chains, which could lead to higher peak viscosity and breakdown value, as well as a softer and stickier texture of cooked rice, were the key factors in determining the eating quality of hybrid rice. High-performance anion-exchange chromatography analyses showed that the proportion of amylopectin short chains (degree of polymerization 6-10) and intermediate chains (degree of polymerization 13-24), which might affect the gelatinisation enthalpy and crystallinity, also contributed greatly to the eating quality of hybrid rice. Moreover, this study indicated that a greater diversity of forms and sizes of starch granules might influence the eating quality of hybrid rice.
Assuntos
Amilose/química , Oryza/química , Amido/química , Paladar , Amilopectina/química , Quimera , Culinária , Farinha , Gelatina/química , Oryza/genética , Viscosidade , Difração de Raios XRESUMO
[This corrects the article DOI: 10.3389/fnut.2020.583997.].
RESUMO
Genetic diversities or favorable genes within distantly related species are the important resources for crop genetic improvement and germplasm innovation. Spike-Stalk injection method (SSI) has long been applied in rice genetic improvement by directly introducing genetic materials from non-mating donor species, while its inheritance patterns and the underlying mechanisms are poorly elucidated. In this study, a rice variant ERV1 with improved yield-related traits was screened out in the way of introducing genomic DNA of Oryza eichingeri (2n=24, CC genome) into RH78 (Oryza sativa L. 2n=24, AA genome) using SSI method. Genome-wide comparison revealed that the genomic heterozygosity of ERV1 was approximately 8-fold higher than RH78. Restriction-site associated DNA sequencing technology (RAD-seq) and association analysis of the ERV1 inbred F2 population identified 5 quantitative trait loci (QTLs) regions responsible for these yield-related traits, and found that genomic heterozygosity of ERV1 inbred lines was significantly lower than ERV1, while spontaneous mutation rate of the ERV1 inbred lines was significantly higher than ERV1. Our results preliminarily uncovered the inheritance patterns of SSI variant rice, and the potential genomic regions for traits changes, which yielded novel insights into the mechanisms of SSI method, and may accelerate our understanding of plant genome evolution, domestication, and speciation in nature.
RESUMO
In this study, by analyzing the relationship between hybrid combinations and parental lines, we found that the eating quality traits of hybrid combinations were determined by both parents. The sterile lines determined the overall eating quality characteristics of the hybrid combinations. For the same sterile line, there were some correlations between the hybrid combinations and restorer lines in terms of taste value, rapid visco analyzer breakdown and setback values, apparent amylose content, and cooked rice hardness and stickiness. Analysis of the starch fine structure between hybrid combinations and their restorer lines demonstrated positive correlations between them in terms of short-branch amylopectin chains and amylose. Moreover, different allelic combinations of the Wx gene showed different genetic effects on the eating quality traits of hybrid rice. Overall, this study provides a framework for the development of hybrid rice with superior eating quality.
RESUMO
Rice grain with excessive cadmium (Cd) is a major source of dietary Cd intake and a serious threat to health for people who consume rice as a staple food. The development of elite rice cultivars with consistently low Cd content is challenging for conventional breeding approaches, and new strategies urgently need to be developed. Here, we report the development of new indica rice lines with low Cd accumulation and no transgenes by knocking out the metal transporter gene OsNramp5 using CRISPR/Cas9 system. Hydroponic culture showed that Cd concentrations in shoots and roots of osnramp5 mutants were dramatically decreased, resulting in rescue of impaired growth in high Cd condition. Cd-contaminated paddy field trials demonstrated that Cd concentration in osnramp5 grains was consistently less than 0.05 mg/kg, in contrast to high Cd concentrations from 0.33 mg/kg to 2.90 mg/kg in grains of Huazhan (the wild-type indica rice). In particular, the plant yield was not significantly affected in osnramp5 mutants. Furthermore, we developed promising hybrid rice lines with extremely low Cd content in grains. Our work supplies a practical approach to developing Cd pollution-safe indica rice cultivars that minimizes Cd contamination risk in grains.