Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 651, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977969

RESUMO

Soybean is a major source of protein and edible oil worldwide. Originating from the Huang-Huai-Hai region, which has a temperate climate, soybean has adapted to a wide latitudinal gradient across China. However, the genetic mechanisms responsible for the widespread latitudinal adaptation in soybean, as well as the genetic basis, adaptive differentiation, and evolutionary implications of theses natural alleles, are currently lacking in comprehensive understanding. In this study, we examined the genetic variations of fourteen major gene loci controlling flowering and maturity in 103 wild species, 1048 landraces, and 1747 cultivated species. We found that E1, E3, FT2a, J, Tof11, Tof16, and Tof18 were favoured during soybean improvement and selection, which explained 75.5% of the flowering time phenotypic variation. These genetic variation was significantly associated with differences in latitude via the LFMM algorithm. Haplotype network and geographic distribution analysis suggested that gene combinations were associated with flowering time diversity contributed to the expansion of soybean, with more HapA clustering together when soybean moved to latitudes beyond 35°N. The geographical evolution model was developed to accurately predict the suitable planting zone for soybean varieties. Collectively, by integrating knowledge from genomics and haplotype classification, it was revealed that distinct gene combinations improve the adaptation of cultivated soybeans to different latitudes. This study provides insight into the genetic basis underlying the environmental adaptation of soybean accessions, which could contribute to a better understanding of the domestication history of soybean and facilitate soybean climate-smart molecular breeding for various environments.


Assuntos
Domesticação , Variação Genética , Glycine max , Glycine max/genética , Glycine max/fisiologia , Glycine max/crescimento & desenvolvimento , Genes de Plantas , Adaptação Fisiológica/genética , China , Haplótipos , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia
2.
Mol Carcinog ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016677

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with poor prognosis and inadequate response to treatment, such as gemcitabine (Gem), the first-line chemotherapeutic drug. Understanding the molecular determinants that control drug resistance to Gem is critical to predict potentially responsive patients and improve the benefits of Gem therapy. Emerging evidence suggests that certain developmental pathways, such as Hippo signaling, are aberrated and play important roles in Gem resistance in cancers. Although Hippo signaling has been reported to play a role in chemoresistance in cancers, it has not been clarified which specific target gene(s) functionally mediates the effect. In the present study, we found that YAP serves as a potent barrier for the cellular sensitivity of PDAC cells to Gem. We then identified and characterized laminin subunit beta 3 (LAMB3) as a bona fide target of YAP-TEAD4 to amplify YAP signaling via a feedback loop. Such a YAP-LAMB3 axis is critical to induce epithelial-mesenchymal transition and mediate Gem resistance. Taken together, we uncovered that YAP-LAMB3 axis is an important regulator of Gem, thus providing potential therapeutic targets for overcoming Gem resistance in PDAC.

3.
Magn Reson Med ; 92(3): 956-966, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38770624

RESUMO

PURPOSE: To demonstrate the feasibility of zigzag sampling for 3D rapid hyperpolarized 129Xe ventilation MRI in human. METHODS: Zigzag sampling in one direction was combined with gradient-recalled echo sequence (GRE-zigzag-Y) to acquire hyperpolarized 129Xe ventilation images. Image quality was compared with a balanced SSFP (bSSFP) sequence with the same spatial resolution for 12 healthy volunteers (HVs). For another 8 HVs and 9 discharged coronavirus disease 2019 subjects, isotropic resolution 129Xe ventilation images were acquired using zigzag sampling in two directions through GRE-zigzag-YZ. 129Xe ventilation defect percent (VDP) was quantified for GRE-zigzag-YZ and bSSFP acquisitions. Relationships and agreement between these VDP measurements were evaluated using Pearson correlation coefficient (r) and Bland-Altman analysis. RESULTS: For 12 HVs, GRE-zigzag-Y and bSSFP required 2.2 s and 10.5 s, respectively, to acquire 129Xe images with a spatial resolution of 3.96 × 3.96 × 10.5 mm3. Structural similarity index, mean absolute error, and Dice similarity coefficient between the two sets of images and ventilated lung regions were 0.85 ± 0.03, 0.0015 ± 0.0001, and 0.91 ± 0.02, respectively. For another 8 HVs and 9 coronavirus disease 2019 subjects, 129Xe images with a nominal spatial resolution of 2.5 × 2.5 × 2.5 mm3 were acquired within 5.5 s per subject using GRE-zigzag-YZ. VDP provided by GRE-zigzag-YZ was strongly correlated (R2 = 0.93, p < 0.0001) with that generated by bSSFP with minimal biases (bias = -0.005%, 95% limit-of-agreement = [-0.414%, 0.424%]). CONCLUSION: Zigzag sampling combined with GRE sequence provides a way for rapid 129Xe ventilation imaging.


Assuntos
COVID-19 , Pulmão , Imageamento por Ressonância Magnética , SARS-CoV-2 , Isótopos de Xenônio , Humanos , COVID-19/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Adulto , Pulmão/diagnóstico por imagem , Pessoa de Meia-Idade , Imageamento Tridimensional/métodos , Estudos de Viabilidade
4.
J Nanobiotechnology ; 22(1): 154, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581017

RESUMO

The combination of immune checkpoint inhibitors and immunogenic cell death (ICD) inducers has become a promising strategy for the treatment of various cancers. However, its efficacy remains unmet because of the dense stroma and defective vasculatures in the tumor microenvironment (TME) that restricts the intratumoral infiltration of cytotoxic T lymphocytes (CTLs). Herein, cancer-associated fibroblasts (CAFs)-targeted nanoemulsions are tailored to combine the ICD induction and the TME reprogramming to sensitize checkpoint blockade immunotherapy. Melittin, as an ICD inducer and an antifibrotic agent, is efficiently encapsulated into the nanoemulsion accompanied by a nitric oxide donor to improve its bioavailability and tumor targeting. The nanoemulsions exhibited dual functionality by directly inducing direct cancer cell death and enhancing the tumoral immunogenicity, while also synergistically reprogramming the TME through reversing the activated CAFs, decreasing collagen deposition and restoring tumor vessels. Consequently, these nanemulsions successfully facilitated the CTLs infiltration and suppressing the recruitment of immunosuppressive cells. A combination of AE-MGNPs and anti-CTLA-4 antibody greatly elicited a striking level of antitumor T-cell response to suppress tumor growth in CAFs-rich colorectal tumor models. Our work emphasized the integration of the ICD induction with simultaneous modulation of the TME to enhance the sensitivity of patients to checkpoint blockade immunotherapy.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Neoplasias , Humanos , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
5.
Angew Chem Int Ed Engl ; 63(12): e202319587, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38226832

RESUMO

Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.

6.
J Am Chem Soc ; 145(11): 6339-6348, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36892881

RESUMO

Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most promising routes to facilitate carbon neutrality. An alkaline electrolyte is typically needed to promote the production of valuable multi-carbon molecules (such as ethylene). However, the reaction between CO2 and OH- consumes a significant quantity of CO2/alkali and causes the rapid decay of CO2RR selectivity and stability. Here, we design a catalyst-electrolyte interface with an effective electrostatic confinement of in situ generated OH- to improve ethylene electrosynthesis from CO2 in neutral medium. In situ Raman measurements indicate the direct correlation between ethylene selectivity and the intensities of surface Cu-CO and Cu-OH species, suggesting the promoted C-C coupling with the surface enrichment of OH-. Thus, we report a CO2-to-ethylene Faradaic efficiency (FE) of 70% and a partial current density of 350 mA cm-2 at -0.89 V vs the reversible hydrogen electrode. Furthermore, the system demonstrated a 50 h stable operation at 300 mA cm-2 with an average ethylene FE of ∼68%. This study offers a universal strategy to tune the reaction micro-environment, and a significantly improved ethylene FE of 64.5% was obtained even in acidic electrolytes (pH = 2).

7.
J Am Chem Soc ; 145(44): 24338-24348, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37880928

RESUMO

Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C2+) chemicals, posing a grand challenge to achieve a single C2+ product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu2(OH)3NO3, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption. With increased *CO coverage on the defect-rich Cu, we report an acetate selectivity of 56 ± 2% (compared to 31 ± 1% for conventional Cu) and a partial current density of 222 ± 7 mA per square centimeter in CO electroreduction. When run at 400 mA per square centimeter for 40 h in a flow reactor, this catalyst produces 68.3 mmol of acetate throughout. This work highlights the value of a Cu-containing mineral phase in accessing suitable structures for improved selectivity to a single desired C2+ product.

8.
Theor Appl Genet ; 136(7): 149, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294438

RESUMO

KEY MESSAGE: From 61 QTL mapped, a stable QTL cluster of 992 kb was discovered on chromosome 5 for folate content and a putative candidate gene, Glyma.05G237500, was identified. Folate (vitamin B9) is one of the most essential micronutrients whose deficiencies lead to various health defects in humans. Herein, we mapped the quantitative trait loci (QTL) underlying seed folate content in soybean using recombinant inbred lines developed from cultivars, ZH35 and ZH13, across four environments. We identified 61 QTL on 12 chromosomes through composite interval mapping, with phenotypic variance values ranging from 1.68 to 24.68%. A major-effect QTL cluster (qFo-05) was found on chromosome 5, spanning 992 kb and containing 134 genes. Through gene annotation and single-locus haplotyping analysis of qFo-05 in a natural soybean population, we identified seven candidate genes significantly associated with 5MTHF and total folate content in multiple environments. RNA-seq analysis showed a unique expression pattern of a hemerythrin RING zinc finger gene, Glyma.05G237500, between both parental cultivars during seed development, which suggest the gene might regulate folate content in soybean. This is the first study to investigate QTL underlying folate content in soybean and provides new insight for molecular breeding to improve folate content in soybean.


Assuntos
Glycine max , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico , Sementes
9.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447965

RESUMO

This paper presents a personalized and smart flowerpot for ornamental horticulture, integrating 3D printing and cloud technology to address existing design limitations and enable real-time monitoring of environmental parameters in plant cultivation. While 3D printing and cloud technology have seen widespread adoption across industries, their combined application in agriculture, particularly in ornamental horticulture, remains relatively unexplored. To bridge this gap, we developed a flowerpot that maximizes space utilization, simplicity, personalization, and aesthetic appeal. The shell was fabricated using fused deposition modeling (FDM) in 3D printing, and an Arduino-based control framework with sensors was implemented to monitor critical growth factors such as soil moisture, temperature, humidity, and light intensity. Real-time data are transmitted to the Bamfa Cloud through Wi-Fi, and a mobile application provides users with instant access to data and control over watering and lighting adjustments. Our results demonstrate the effectiveness of the smart flowerpot in enabling automated monitoring of plant growth and environmental control. This innovation holds significant promise for advancing smart device development in ornamental horticulture and other related fields, enhancing efficiency, plant health, and overall user experience. Future research in this area has the potential to revolutionize horticultural practices and contribute to the advancement of smart agriculture.


Assuntos
Computação em Nuvem , Aplicativos Móveis , Impressão Tridimensional , Temperatura , Horticultura
10.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445665

RESUMO

Plasmonic gold (Au) and Au-based nanocatalysts have received significant attention over the past few decades due to their unique visible light (VL) photocatalytic features for a wide variety of chemical reactions in the fields of environmental protection. However, improving their VL photocatalytic activity via a rational design is prevalently regarded as a grand challenge. Herein we boosted the VL photocatalysis of the TiO2-supported Au-Cu nanocatalyst by applying O2 plasma to treat this bimetallic plasmonic nanocatalyst. We found that O2 plasma treatment led to a strong interaction between the Au and Cu species compared with conventional calcination treatment. This interaction controlled the size of plasmonic metallic nanoparticles and also contributed to the construction of AuCu-TiO2 interfacial sites by forming AuCu alloy nanoparticles, which, thus, enabled the plasmonic Au-Cu nanocatalyst to reduce the Schottky barrier height and create numbers of highly active interfacial sites. The catalyst's characterizations and density functional theory (DFT) calculations demonstrated that boosted VL photocatalytic activity over O2 plasma treated Au-Cu/TiO2 nanocatalyst arose from the favorable transfer of hot electrons and a low barrier for the reaction between CO and O with the construction of large numbers of AuCu-TiO2 interfacial sites. This work provides an efficient approach for the rational design and development of highly active plasmonic Au and Au-based nanocatalysts and deepens our understanding of their role in VL photocatalytic reactions.


Assuntos
Ligas , Nanopartículas Metálicas , Elétrons , Exercício Físico
11.
Angew Chem Int Ed Engl ; 62(9): e202217671, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592001

RESUMO

Electrolyte freezing under low temperatures is a critical challenge for the development of aqueous batteries (ABs). While lowering the freezing point of the electrolyte has caught major research efforts, limited attention has been paid to the structural evolution during the electrolyte freezing process and regulating the frozen electrolyte structure for low temperature ABs. Here, we reveal the formation process of interconnected liquid regions for ion transport in frozen electrolytes with various in situ variable-temperature technologies. More importantly, the low-temperature performance of ABs was significantly improved with the colloidal electrolyte design using graphene oxide quantum dots (GOQDs), which effectively inhibits the growth of ice crystals and expands the interconnected liquid regions for facial ion transport. This work provides new insights and a promising strategy for the electrolyte design of low-temperature ABs.

12.
Chemistry ; 26(31): 7083-7091, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32073723

RESUMO

The electron donor tetrathiafulvalene (D1 ) was fused onto the electron-rich heterabuckybowl trichalcogenasumanene (D2 ) through an electron-deficient pyrazine unit (A) to give 1 c, 1 d, 2 c, and 2 d, featuring the D1 -A-D2 structure. Both D1 and D2 play a pivotal role in intramolecular charge-transfer (ICT) transitions, consequently 1 c, 2 d, 2 c, and 2 d show a broad ICT band at 450-720 nm in steady state. They exhibit two charge-separated transient states, CS1 and CS2 , that appear in sequence. CS1 has a short lifetime (542 fs), and the D1 moiety on CS1 is in the radical cation state with an absorption maximum (λmax ) at 889 nm. CS1 then converts into CS2 (λmax , 1105 nm) through an ICT between D1 .+ and D2 , affording D1 (1-δ).+ and D2 δ.+ . Compounds 1 c, 1 d, 2 c, and 2 d show protonation-induced intramolecular electron transfer that leads to absorption at λ=700-1300 nm. Owing to the existence of an electron-rich C=C bond on the D1 moiety and in situ generation of 1 O2 by the pyrazine-fused D2 moiety, compounds 1 c, 1 d, 2 c, and 2 d display self-sensitized photooxidation in 50 s.


Assuntos
Compostos Heterocíclicos/química , Pirazinas/química , Transporte de Elétrons , Elétrons , Hidrogenação , Estrutura Molecular
13.
J Chem Inf Model ; 59(9): 3619-3624, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31433187

RESUMO

Drug repositioning, or the identification of new indications for approved therapeutic drugs, has gained substantial traction with both academics and pharmaceutical companies because it reduces the cost and duration of the drug development pipeline and the likelihood of unforeseen adverse events. To date there has not been a systematic effort to identify such opportunities, in part because of the lack of a comprehensive resource for an enormous amount of unsystematic drug repositioning information to support scientists who could benefit from this endeavor. To address this challenge, we developed a new database, the Experimental Knowledge-Based Drug Repositioning Database (EK-DRD), by using text and data mining as well as manual curation. EK-DRD contains experimentally validated drug repositioning annotation for 1861 FDA-approved and 102 withdrawn small-molecule drugs. Annotation was done at four levels using 30 944 target assay records, 3999 cell assay records, 585 organism assay records, and 8889 clinical trial records. Additionally, approximately 1799 repositioning protein or target sequences coupled with 856 related diseases and 1332 pathways are linked to the drug entries. Our web-based software displays a network of integrative relationships between drugs, their repositioning targets, and related diseases. The database is fully searchable and supports extensive text, sequence, chemical structure, and relational query searches. EK-DRD is freely accessible at http://www.idruglab.com/drd/index.php .


Assuntos
Bases de Dados de Produtos Farmacêuticos , Reposicionamento de Medicamentos/métodos , Bases de Conhecimento , Animais , Mineração de Dados/métodos , Desenho de Fármacos , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia , Software
14.
J Chem Inf Model ; 59(10): 4063-4069, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31524396

RESUMO

Hybrid-molecule-based drug design is the combination of two or more bioactive molecules into a single chemical entity. This strategy may be used to achieve better affinity and efficacy or improved properties compared with the parent molecules, to interact with two or multiple targets, to reduce undesirable side effects, to decrease drug-drug interactions, or to reduce the emergence of drug resistance. The approach offers the prospect of better drugs for the treatment of many human diseases. Research activity in this area is increasing and has attracted many practitioners worldwide. To accelerate the design and discovery of new hybrid-molecule-based drugs, it is essential to properly collect and annotate experimental data obtained from known hybrid molecules. To address this need, we have developed HybridMolDB ( http://www.idruglab.com/HybridMolDB/index.php ), a manually curated database dedicated to hybrid molecules for chemical biology and drug discovery. It contains structures, manually annotated design protocols, pharmacological data, some physicochemical properties, ligand efficiency, drug-likeness, and ADMET characteristics, and the biological targets of known hybrid molecules. HybridMolDB supports a range of query types, including searches by text, protein sequence, chemical structure similarity, and property ranges. The database serves as an open source facilitating the development and/or optimization of related in silico tools for the design and discovery of hybrid-molecule-based drugs and chemical probes.


Assuntos
Bioquímica , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Desenho de Fármacos
15.
Bioinformatics ; 33(8): 1235-1237, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011765

RESUMO

SUMMARY: Evaluation of the capacity for separating actives from challenging decoys is a crucial metric of performance related to molecular docking or a virtual screening workflow. The Directory of Useful Decoys (DUD) and its enhanced version (DUD-E) provide a benchmark for molecular docking, although they only contain a limited set of decoys for limited targets. DecoyFinder was released to compensate the limitations of DUD or DUD-E for building target-specific decoy sets. However, desirable query template design, generation of multiple decoy sets of similar quality, and computational speed remain bottlenecks, particularly when the numbers of queried actives and retrieved decoys increases to hundreds or more. Here, we developed a program suite called RApid DEcoy Retriever (RADER) to facilitate the decoy-based assessment of virtual screening. This program adopts a novel database-management regime that supports rapid and large-scale retrieval of decoys, enables high portability of databases, and provides multifaceted options for designing initial query templates from a large number of active ligands and generating subtle decoy sets. RADER provides two operational modes: as a command-line tool and on a web server. Validation of the performance and efficiency of RADER was also conducted and is described. AVAILABILITY AND IMPLEMENTATION: RADER web server and a local version are freely available at http://rcidm.org/rader/ . CONTACT: lingwang@scut.edu.cn or went@scut.edu.cn . SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Simulação de Acoplamento Molecular/métodos , Software , Bases de Dados de Compostos Químicos , Ligantes
16.
Bioinformatics ; 33(21): 3480-3481, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036579

RESUMO

SUMMARY: Molecular-similarity searches based on two-dimensional (2D) fingerprint and three-dimensional (3D) shape represent two widely used ligand-based virtual screening (VS) methods in computer-aided drug design. 2D fingerprint-based VS utilizes the binary fragment information on a known ligand, whereas 3D shape-based VS takes advantage of geometric information for predefined features from a 3D conformation. Given their different advantages, it would be desirable to hybridize 2D fingerprint and 3D shape molecular-similarity approaches in drug discovery. Here, we presented a general hybrid molecular-similarity protocol, referred to as HybridSim, obtained by combining the 2D fingerprint- and 3D shape-based similarity search methods and evaluated its performance on 595,036 actives and decoys for 40 pharmaceutically relevant targets available in the Directory of Useful Decoys Enhanced (DUD-E). Our results showed that HybridSim significantly improved the overall performance in 40 VS projects as compared with using only 2D fingerprint and 3D shape methods. Furthermore, HybridSim-VS, the first online platform using the proposed HybridSim method coupled with 17,839,945 screenable and purchasable compounds, was developed to provide large-scale and proficient VS capabilities to experts and nonexperts in the field. AVAILABILITY AND IMPLEMENTATION: HybridSim-VS web server is freely available at http://www.rcidm.org/HybridSim-VS/. CONTACT: lingwang@scut.edu.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Desenho de Fármacos , Software , Avaliação Pré-Clínica de Medicamentos/métodos , Internet , Ligantes , Conformação Molecular
17.
J Environ Sci (China) ; 60: 91-97, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29031451

RESUMO

A simple approach to enhance the photocatalytic activity of red phosphorus (P) was developed. A mechanical ball milling method was applied to reduce the size of red P and to deposit graphene quantum dots onto red P. The product was characterized by scanning electron microscopy, transmission electron microscopy, contact angle measurements, zeta-potential measurements, X-ray diffraction and UV-vis absorption spectroscopy. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of rhodamine B.


Assuntos
Grafite/química , Fósforo/química , Processos Fotoquímicos , Pontos Quânticos/química
18.
Langmuir ; 30(10): 2676-83, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24601731

RESUMO

We report a facile method for preparing porous structured TiO2 materials by templating from Pickering high-internal phase emulsions (HIPEs). A Pickering HIPE with an internal phase of up to 80 vol %, stabilized by poly(N-isopropylacrylamide)-based microgels and TiO2 solid nanoparticles, was first formulated and employed as a template to prepare the porous TiO2 materials with an interconnected structure. The resultant materials were characterized by scanning electron microscopy, X-ray diffraction, and mercury intrusion. Our results showed that the parent emulsion droplets promoted the formation of macropores and interconnecting throats with sizes of ~50 and ~10 µm, respectively, while the interfacially adsorbed microgel stabilizers drove the formation of smaller pores (~100 nm) throughout the macroporous walls after drying and sintering. The interconnected structured network with the bimodal pores could be well preserved after calcinations at 800 °C. In addition, the photocatalytic activity of the fabricated TiO2 was evaluated by measuring the photodegradation of Rhodamine B in water. Our results revealed that the fabricated TiO2 materials are good photocatalysts, showing enhanced activity and stability in photodegrading organic molecules.


Assuntos
Emulsões/química , Titânio/química , Microscopia Eletrônica de Varredura , Porosidade , Difração de Raios X
19.
iScience ; 27(8): 110437, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39114499

RESUMO

The electrochemical conversion of carbon dioxide (CO2) to valuable chemicals is gaining significant attention as a pragmatic solution for achieving carbon neutrality and storing renewable energy in a usable form. Recent research increasingly focuses on designing electrocatalysts that specifically convert CO2 into ethanol, a desirable product due to its high-energy density, ease of storage, and portability. However, achieving high-efficiency ethanol production remains a challenge compared to ethylene (a competing product with a similar electron configuration). Existing electrocatalytic systems often suffer from limitations such as low energy efficiency, poor stability, and inadequate selectivity toward ethanol. Inspired by recent progress in the field, this review explores fundamental principles and material advancements in CO2 electroreduction, emphasizing strategies for ethanol production over ethylene. We discuss electrocatalyst design, reaction mechanisms, challenges, and future research directions. These advancements aim to bridge the gap between current research and industrialized applications of this technology.

20.
Adv Colloid Interface Sci ; 328: 103177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759448

RESUMO

Pickering foam is a type of foam stabilized by solid particles known as Pickering stabilizers. These solid stabilizers adsorb at the liquid-gas interface, providing superior stability to the foam. Because of its high stability, controllability, versatility, and minimal environmental impact, nanomaterial-stabilized Pickering foam has opened up new possibilities and development prospects for foam applications. This review provides an overview of the current state of development of Pickering foam stabilized by a wide range of nanomaterials, including cellulose nanomaterials, chitin nanomaterials, silica nanoparticles, protein nanoparticles, clay mineral, carbon nanotubes, calcium carbonate nanoparticles, MXene, and graphene oxide nanosheets. Particularly, the preparation and surface modification methods of various nanoparticles, the fundamental properties of nanomaterial-stabilized Pickering foam, and the synergistic effects between nanoparticles and surfactants, functional polymers, and other additives are systematically introduced. In addition, the latest progress in the application of nanomaterial-stabilized Pickering foam in the oil industry, food industry, porous functional material, and foam flotation field is highlighted. Finally, the future prospects of nanomaterial-stabilized Pickering foam in different fields, along with directions for further research and development directions, are outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA