Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8017): 728-735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778101

RESUMO

Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2-5. Here we demonstrate that an antibody-drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies.


Assuntos
Neoplasias Hematológicas , Hematopoese , Imunoconjugados , Antígenos Comuns de Leucócito , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Hematopoese/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Linhagem Celular Tumoral , Especificidade de Anticorpos
2.
Nature ; 610(7933): 783-790, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224385

RESUMO

Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to ß-globin, which results in fetal haemoglobin (HbF, α2γ2) being gradually replaced by adult haemoglobin (HbA, α2ß2)1. This process has motivated the development of innovative approaches to treat sickle cell disease and ß-thalassaemia by increasing HbF levels in postnatal RBCs2. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression. In RBC precursors, depletion of the von Hippel-Lindau (VHL) E3 ubiquitin ligase stabilized its ubiquitination target, hypoxia-inducible factor 1α (HIF1α)3,4, to induce γ-globin gene transcription. Mechanistically, HIF1α-HIF1ß heterodimers bound cognate DNA elements in BGLT3, a long noncoding RNA gene located 2.7 kb downstream of the tandem γ-globin genes HBG1 and HBG2. This was followed by the recruitment of transcriptional activators, chromatin opening and increased long-range interactions between the γ-globin genes and their upstream enhancer. Similar induction of HbF occurred with hypoxia or with inhibition of prolyl hydroxylase domain enzymes that target HIF1α for ubiquitination by the VHL E3 ubiquitin ligase. Our findings link globin gene regulation with canonical hypoxia adaptation, provide a mechanism for HbF induction during stress erythropoiesis and suggest a new therapeutic approach for ß-haemoglobinopathies.


Assuntos
gama-Globinas , Humanos , Cromatina , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , gama-Globinas/biossíntese , gama-Globinas/genética , Hipóxia/genética , Prolil Hidroxilases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Longo não Codificante , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Eritropoese
3.
Genome Res ; 34(7): 1089-1105, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38951027

RESUMO

Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.


Assuntos
Epigênese Genética , Epigenoma , Especificidade da Espécie , Animais , Camundongos , Humanos , Células Sanguíneas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Epigenômica/métodos
4.
Nature ; 595(7866): 295-302, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34079130

RESUMO

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Assuntos
Adenina/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/terapia , Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Animais , Antígenos CD34/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Modelos Animais de Doenças , Feminino , Terapia Genética , Genoma Humano/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/patologia , Humanos , Masculino , Camundongos
5.
Nat Methods ; 20(7): 1037-1047, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37336949

RESUMO

Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.


Assuntos
Cromatina , Genoma , Animais , Camundongos , Cromatina/genética , Mapeamento Cromossômico/métodos , Cromossomos , Genômica/métodos
6.
Mol Ther ; 32(10): 3433-3452, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39086133

RESUMO

Sickle cell disease (SCD) is a common, severe genetic blood disorder. Current pharmacotherapies are partially effective and allogeneic hematopoietic stem cell transplantation is associated with immune toxicities. Genome editing of patient hematopoietic stem cells (HSCs) to reactivate fetal hemoglobin (HbF) in erythroid progeny offers an alternative potentially curative approach to treat SCD. Although the FDA released guidelines for evaluating genome editing risks, it remains unclear how best to approach pre-clinical assessment of genome-edited cell products. Here, we describe rigorous pre-clinical development of a therapeutic γ-globin gene promoter editing strategy that supported an investigational new drug application cleared by the FDA. We compared γ-globin promoter and BCL11A enhancer targets, identified a potent HbF-inducing lead candidate, and tested our approach in mobilized CD34+ hematopoietic stem progenitor cells (HSPCs) from SCD patients. We observed efficient editing, HbF induction to predicted therapeutic levels, and reduced sickling. With single-cell analyses, we defined the heterogeneity of HbF induction and HBG1/HBG2 transcription. With CHANGE-seq for sensitive and unbiased off-target discovery followed by targeted sequencing, we did not detect off-target activity in edited HSPCs. Our study provides a blueprint for translating new ex vivo HSC genome editing strategies toward clinical trials for treating SCD and other blood disorders.


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Edição de Genes , Animais , Humanos , Anemia Falciforme/terapia , Anemia Falciforme/genética , Antígenos CD34/metabolismo , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , gama-Globinas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Regiões Promotoras Genéticas
7.
BMC Health Serv Res ; 24(1): 469, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622660

RESUMO

BACKGROUND: China has piloted Long-Term Care Insurance (LTCI) to address increasing care demand. However, many cities neglected adjusting LTCI premiums since the pilot, risking the long-term sustainability of LTCI. Therefore, using Zhejiang Province as a case, this study simulated mortality-adjusted long-term care demand and the balance of LTCI funds through dynamic financing mechanism under diverse life expectancy and disability scenarios. METHODS: Three-parameter log-quadratic model was used to estimate the mortality from 1990 to 2020. Mortality with predicted interval from 2020 to 2080 was projected by Lee-Carter method extended with rotation. Cohort-component projection model was used to simulate the number of older population with different degrees of disability. Disability data of the older people is sourced from China Health and Retirement Longitudinal Study 2018. The balance of LTCI fund was simulated by dynamic financing actuarial model. RESULTS: Life expectancy of Zhejiang for male (female) is from 80.46 (84.66) years in 2020 to 89.39 [86.61, 91.74] (91.24 [88.90, 93.25]) years in 2080. The number of long-term care demand with severe disability in Zhejiang demonstrates an increasing trend from 285 [276, 295] thousand in 2023 to 1027 [634, 1657] thousand in 2080 under predicted mean of life expectancy. LTCI fund in Zhejiang will become accumulated surplus from 2024 to 2080 when annual premium growth rate is 5.25% [4.20%, 6.25%] under various disability scenarios, which is much higher than the annual growth of unit cost of long-term care services (2.25%). The accumulated balance of LTCI fund is sensitive with life expectancy. CONCLUSIONS: Dynamic growth of LTCI premium is essential in dealing with current deficit around 2050 and realizing Zhejiang's LTCI sustainability in the long-run. The importance of dynamic monitoring disability and mortality information is emphasized to respond immediately to the increase of premiums. LTCI should strike a balance between expanding coverage and controlling financing scale. This study provides implications for developing countries to establish or pilot LTCI schemes.


Assuntos
Seguro de Assistência de Longo Prazo , Assistência de Longa Duração , Humanos , Masculino , Feminino , Idoso , Estudos Longitudinais , Expectativa de Vida , China
8.
Ecotoxicol Environ Saf ; 269: 115775, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070413

RESUMO

Geosmin is an environmental pollutant that causes off-flavor in water and aquatic products. The high occurrence of geosmin contamination in aquatic systems and aquaculture raises public awareness, however, few studies have investigated the response pathways of geosmin stress on freshwater fish. In this research, grass carp were exposed to 50 µg/L geosmin for 96 h, liver tissue was sequenced and validated using real-time qPCR. In total of 528 up-regulated genes and 488 down-regulated genes were observed, includes cytochrome P450 and uridine diphosphate (UDP)-glucuronosyltransferase related genes. KEGG analysis showed that chemical carcinogenesis-DNA adducts, metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450 pathway was enriched. Common genes from the target genes of microRNAs and differential expression genes are enriched in metabolism of xenobiotics cytochrome P450 pathway. Two miRNAs (dre-miR-146a and miR-212-3p) down regulated their target genes (LOC127510138 and adh5, respectively) which are enriched cytochrome P450 related pathway. The results present that geosmin is genetoxic to grass carp and indicate that cytochrome P450 system and UDP-glucuronosyltransferase play essential roles in biotransformation of geosmin. MicroRNAs regulate the biotransformation of geosmin by targeting specific genes, which contributes to the development of strategies to manage its negative impacts in both natural and artificial environments.


Assuntos
Carpas , Doenças dos Peixes , MicroRNAs , Naftóis , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Carpas/genética , Carpas/metabolismo , RNA Mensageiro , Sistema Enzimático do Citocromo P-450/genética , Água Doce , Glucuronosiltransferase/genética , Difosfato de Uridina , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
9.
An Acad Bras Cienc ; 96(4): e20230891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39442099

RESUMO

Accurate wind power prediction can effectively alleviate the pressure of the power system peak frequency regulation, and is more conducive to the economic dispatch of the power system. To enhance wind power forecasting accuracy, a hybrid approach for wind power interval prediction is proposes in this study. Firstly, an Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) is applied to decompose the initial wind power sequence into multiple modes, and Variational Mode Decomposition is used to further decompose the high-frequency non-stationary components. Next, Fuzzy Entropy (FE) is utilized to assess the complexity of the post-decomposed Intrinsic Mode Functions (IMFs), and different forecasting methods are employed accordingly, the point predictions were obtained by linearly summing the component predictions.Additionally, an improved sparrow search algorithm (ISSA) is used to seek the optimal hyperparameters of the prediction algorithm. Finally, the prediction intervals are constructed using the point prediction results based on kernel density estimation (KDE). The root mean square errors (RMSE) of deterministic predictions are 2.8458 MW and 1.8605 MW, with uncertainty coverage rates of 95.83% and 97.92% at a 95% confidence level.


Assuntos
Algoritmos , Previsões , Vento , Previsões/métodos , Centrais Elétricas , Lógica Fuzzy
10.
Blood ; 137(10): 1327-1339, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33512425

RESUMO

While constitutive CCCTC-binding factor (CTCF)-binding sites are needed to maintain relatively invariant chromatin structures, such as topologically associating domains, the precise roles of CTCF to control cell-type-specific transcriptional regulation remain poorly explored. We examined CTCF occupancy in different types of primary blood cells derived from the same donor to elucidate a new role for CTCF in gene regulation during blood cell development. We identified dynamic, cell-type-specific binding sites for CTCF that colocalize with lineage-specific transcription factors. These dynamic sites are enriched for single-nucleotide polymorphisms that are associated with blood cell traits in different linages, and they coincide with the key regulatory elements governing hematopoiesis. CRISPR-Cas9-based perturbation experiments demonstrated that these dynamic CTCF-binding sites play a critical role in red blood cell development. Furthermore, precise deletion of CTCF-binding motifs in dynamic sites abolished interactions of erythroid genes, such as RBM38, with their associated enhancers and led to abnormal erythropoiesis. These results suggest a novel, cell-type-specific function for CTCF in which it may serve to facilitate interaction of distal regulatory emblements with target promoters. Our study of the dynamic, cell-type-specific binding and function of CTCF provides new insights into transcriptional regulation during hematopoiesis.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Eritropoese , Elementos Reguladores de Transcrição , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Elementos Facilitadores Genéticos , Células Eritroides/citologia , Células Eritroides/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ativação Transcricional
11.
J Asian Nat Prod Res ; 25(2): 156-162, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35616229

RESUMO

Two new sesquiterpenoids, flammupin A (1) and flammupin B (2), along with two known compounds, enokipodin C (3) and 5,5'-dibuthoxy-2,2'-bifuran (4) were obtained from Flammulina velutipes, an endophytic fungus isolated from the roots of Caulophyllum robustum Maxim. The structures were elucidated by the combination of HR-ESI-MS, NMR, and ECD analyses. Compound 3 exhibited moderate to potent cytotoxicity against A549, HeLa, and SMMC-7721 cells with IC50 values ranged from 3.69 to 11.84 µM.


Assuntos
Flammulina , Sesquiterpenos , Humanos , Sesquiterpenos/química , Células HeLa
12.
Gene Ther ; 29(7-8): 431-440, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34548657

RESUMO

Animal models of X-linked juvenile retinoschisis (XLRS) are valuable tools for understanding basic biochemical function of retinoschisin (RS1) protein and to investigate outcomes of preclinical efficacy and toxicity studies. In order to work with an eye larger than mouse, we generated and characterized an Rs1h-/y knockout rat model created by removing exon 3. This rat model expresses no normal RS1 protein. The model shares features of an early onset and more severe phenotype of human XLRS. The morphologic pathology includes schisis cavities at postnatal day 15 (p15), photoreceptors that are misplaced into the subretinal space and OPL, and a reduction of photoreceptor cell numbers by p21. By 6 mo age only 1-3 rows of photoreceptors nuclei remain, and the inner/outer segment layers and the OPL shows major changes. Electroretinogram recordings show functional loss with considerable reduction of both the a-wave and b-wave by p28, indicating early age loss and dysfunction of photoreceptors. The ratio of b-/a-wave amplitudes indicates impaired synaptic transmission to bipolar cells in addition. Supplementing the Rs1h-/y exon3-del retina with normal human RS1 protein using AAV8-RS1 delivery improved the retinal structure. This Rs1h-/y rat model provides a further tool to explore underlying mechanisms of XLRS pathology and to evaluate therapeutic intervention for the XLRS condition.


Assuntos
Moléculas de Adesão Celular , Proteínas do Olho , Retinosquise , Animais , Moléculas de Adesão Celular/genética , Suplementos Nutricionais , Eletrorretinografia , Éxons/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Fenótipo , Ratos , Retina/metabolismo , Retinosquise/genética , Retinosquise/patologia , Retinosquise/terapia
13.
Ecol Lett ; 24(9): 1835-1847, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34121305

RESUMO

Angiosperm sexual systems are fundamental to the evolution and distribution of plant diversity, yet spatiotemporal patterns in angiosperm sexual systems and their drivers remain poorly known. Using data on sexual systems and distributions of 68453 angiosperm species, we present the first global maps of sexual system frequencies and evaluate sexual system evolution during the Cenozoic. Frequencies of dioecy and monoecy increase with latitude, while hermaphrodites are more frequent in warm and arid regions. Transitions to dioecy from other states were higher than to hermaphroditism, but transitions away from dioecy increased since the Cenozoic, suggesting that dioecy is not an evolutionary end point. Transitions between hermaphroditism and dioecy increased, while transitions to monoecy decreased with paleo-temperature when paleo-temperature >0℃. Our study demonstrates the biogeography of angiosperm sexual systems from a macroecological perspective, and enhances our understanding of plant diversity patterns and their response to climate change.


Assuntos
Magnoliopsida , Evolução Biológica , Plantas , Reprodução
14.
Hum Mol Genet ; 28(20): 3355-3368, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31332443

RESUMO

MicroRNA-204 (miR-204) is expressed in pulmonary, renal, mammary and eye tissue, and its reduction can result in multiple diseases including cancer. We first generated miR-204-/- mice to study the impact of miR-204 loss on retinal and retinal pigment epithelium (RPE) structure and function. The RPE is fundamentally important for maintaining the health and integrity of the retinal photoreceptors. miR-204-/- eyes evidenced areas of hyper-autofluorescence and defective photoreceptor digestion, along with increased microglia migration to the RPE. Migratory Iba1+ microglial cells were localized to the RPE apical surface where they participated in the phagocytosis of photoreceptor outer segments (POSs) and contributed to a persistent build-up of rhodopsin. These structural, molecular and cellular outcomes were accompanied by decreased light-evoked electrical responses from the retina and RPE. In parallel experiments, we suppressed miR-204 expression in primary cultures of human RPE using anti-miR-204. In vitro suppression of miR-204 in human RPE similarly showed abnormal POS clearance and altered expression of autophagy-related proteins and Rab22a, a regulator of endosome maturation. Together, these in vitro and in vivo experiments suggest that the normally high levels of miR-204 in RPE can mitigate disease onset by preventing generation of oxidative stress and inflammation originating from intracellular accumulation of undigested photoreactive POS lipids. More generally, these results implicate RPE miR-204-mediated regulation of autophagy and endolysosomal interaction as a critical determinant of normal RPE/retina structure and function.


Assuntos
MicroRNAs/metabolismo , Fagocitose/fisiologia , Fagossomos/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Eletrofisiologia , Feminino , Citometria de Fluxo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fagocitose/genética , Fagossomos/fisiologia , Retina/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Bioinformatics ; 36(4): 1044-1051, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31665223

RESUMO

MOTIVATION: De novo motif discovery algorithms find statistically over-represented sequence motifs that may function as transcription factor binding sites. Current methods often report large numbers of motifs, making it difficult to perform further analyses and experimental validation. The motif selection problem seeks to identify a minimal set of putative regulatory motifs that characterize sequences of interest (e.g. ChIP-Seq binding regions). RESULTS: In this study, the motif selection problem is mapped to variants of the set cover problem that are solved via tabu search and by relaxed integer linear programing (RILP). The algorithms are employed to analyze 349 ChIP-Seq experiments from the ENCODE project, yielding a small number of high-quality motifs that represent putative binding sites of primary factors and cofactors. Specifically, when compared with the motifs reported by Kheradpour and Kellis, the set cover-based algorithms produced motif sets covering 35% more peaks for 11 TFs and identified 4 more putative cofactors for 6 TFs. Moreover, a systematic evaluation using nested cross-validation revealed that the RILP algorithm selected fewer motifs and was able to cover 6% more peaks and 3% fewer background regions, which reduced the error rate by 7%. AVAILABILITY AND IMPLEMENTATION: The source code of the algorithms and all the datasets are available at https://github.com/YichaoOU/Set_cover_tools. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Algoritmos , Sítios de Ligação , Imunoprecipitação da Cromatina , Motivos de Nucleotídeos , Análise de Sequência de DNA , Fatores de Transcrição
16.
BMC Cancer ; 21(1): 768, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34215221

RESUMO

BACKGROUND: The heterogeneous subtypes and stages of epithelial ovarian cancer (EOC) differ in their biological features, invasiveness, and response to chemotherapy, but the transcriptional regulators causing their differences remain nebulous. METHODS: In this study, we compared high-grade serous ovarian cancers (HGSOCs) to low malignant potential or serous borderline tumors (SBTs). Our aim was to discover new regulatory factors causing distinct biological properties of HGSOCs and SBTs. RESULTS: In a discovery dataset, we identified 11 differentially expressed genes (DEGs) between SBTs and HGSOCs. Their expression correctly classified 95% of 267 validation samples. Two of the DEGs, TMEM30B and TSPAN1, were significantly associated with worse overall survival in patients with HGSOC. We also identified 17 DEGs that distinguished stage II vs. III HGSOC. In these two DEG promoter sets, we identified significant enrichment of predicted transcription factor binding sites, including those of RARA, FOXF1, BHLHE41, and PITX1. Using published ChIP-seq data acquired from multiple non-ovarian cell types, we showed additional regulatory factors, including AP2-gamma/TFAP2C, FOXA1, and BHLHE40, bound at the majority of DEG promoters. Several of the factors are known to cooperate with and predict the presence of nuclear hormone receptor estrogen receptor alpha (ER-alpha). We experimentally confirmed ER-alpha and PITX1 presence at the DEGs by performing ChIP-seq analysis using the ovarian cancer cell line PEO4. Finally, RNA-seq analysis identified recurrent gene fusion events in our EOC tumor set. Some of these fusions were significantly associated with survival in HGSOC patients; however, the fusion genes are not regulated by the transcription factors identified for the DEGs. CONCLUSIONS: These data implicate an estrogen-responsive regulatory network in the differential gene expression between ovarian cancer subtypes and stages, which includes PITX1. Importantly, the transcription factors associated with our DEG promoters are known to form the MegaTrans complex in breast cancer. This is the first study to implicate the MegaTrans complex in contributing to the distinct biological trajectories of malignant and indolent ovarian cancer subtypes.


Assuntos
Carcinoma Epitelial do Ovário/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Fatores de Transcrição Box Pareados/metabolismo , Carcinoma Epitelial do Ovário/patologia , Feminino , Humanos
17.
Nature ; 528(7583): 523-5, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26633633

RESUMO

Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

18.
Ecol Lett ; 23(6): 1003-1013, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32249502

RESUMO

A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size-primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems.


Assuntos
Ecossistema , Magnoliopsida , China , América do Norte , Folhas de Planta
19.
J Med Internet Res ; 22(11): e23128, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33035175

RESUMO

BACKGROUND: Patients with COVID-19 in the intensive care unit (ICU) have a high mortality rate, and methods to assess patients' prognosis early and administer precise treatment are of great significance. OBJECTIVE: The aim of this study was to use machine learning to construct a model for the analysis of risk factors and prediction of mortality among ICU patients with COVID-19. METHODS: In this study, 123 patients with COVID-19 in the ICU of Vulcan Hill Hospital were retrospectively selected from the database, and the data were randomly divided into a training data set (n=98) and test data set (n=25) with a 4:1 ratio. Significance tests, correlation analysis, and factor analysis were used to screen 100 potential risk factors individually. Conventional logistic regression methods and four machine learning algorithms were used to construct the risk prediction model for the prognosis of patients with COVID-19 in the ICU. The performance of these machine learning models was measured by the area under the receiver operating characteristic curve (AUC). Interpretation and evaluation of the risk prediction model were performed using calibration curves, SHapley Additive exPlanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), etc, to ensure its stability and reliability. The outcome was based on the ICU deaths recorded from the database. RESULTS: Layer-by-layer screening of 100 potential risk factors finally revealed 8 important risk factors that were included in the risk prediction model: lymphocyte percentage, prothrombin time, lactate dehydrogenase, total bilirubin, eosinophil percentage, creatinine, neutrophil percentage, and albumin level. Finally, an eXtreme Gradient Boosting (XGBoost) model established with the 8 important risk factors showed the best recognition ability in the training set of 5-fold cross validation (AUC=0.86) and the verification queue (AUC=0.92). The calibration curve showed that the risk predicted by the model was in good agreement with the actual risk. In addition, using the SHAP and LIME algorithms, feature interpretation and sample prediction interpretation algorithms of the XGBoost black box model were implemented. Additionally, the model was translated into a web-based risk calculator that is freely available for public usage. CONCLUSIONS: The 8-factor XGBoost model predicts risk of death in ICU patients with COVID-19 well; it initially demonstrates stability and can be used effectively to predict COVID-19 prognosis in ICU patients.


Assuntos
COVID-19/epidemiologia , Aprendizado de Máquina/normas , Algoritmos , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Risco
20.
Opt Express ; 27(6): 8267-8282, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052648

RESUMO

High-fidelity qubit initialization is of significance for efficient error correction in fault tolerant quantum algorithms. Combining two best worlds, speed and robustness, to achieve high-fidelity state preparation and manipulation is challenging in quantum systems, where qubits are closely spaced in frequency. Motivated by the concept of shortcut to adiabaticity, we theoretically propose the shortcut pulses via inverse engineering and further optimize the pulses with respect to systematic errors in frequency detuning and Rabi frequency. Such protocol, relevant to frequency selectivity, is applied to rare-earth ions qubit system, where the excitation of frequency-neighboring qubits should be prevented as well. Furthermore, comparison with adiabatic complex hyperbolic secant pulses shows that these dedicated initialization pulses can reduce the time that ions spend in the excited state by a factor of 6, which is important in coherence time limited systems to approach an error rate manageable by quantum error correction. The approach may also be applicable to superconducting qubits, and any other systems where qubits are addressed in frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA