Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 192(2): 1483-1497, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36810650

RESUMO

Glandular secretory trichomes (GSTs) can secrete and store a variety of specific metabolites. By increasing GST density, valuable metabolites can be enhanced in terms of productivity. However, the comprehensive and detailed regulatory network of GST initiation still needs further investigation. By screening a complementary DNA library derived from young leaves of Artemisia annua, we identified a MADS-box transcription factor, AaSEPALLATA1 (AaSEP1), that positively regulates GST initiation. Overexpression of AaSEP1 in A. annua substantially increased GST density and artemisinin content. The HOMEODOMAIN PROTEIN 1 (AaHD1)-AaMYB16 regulatory network regulates GST initiation via the jasmonate (JA) signaling pathway. In this study, AaSEP1 enhanced the function of AaHD1 activation on downstream GST initiation gene GLANDULAR TRICHOME-SPECIFIC WRKY 2 (AaGSW2) through interaction with AaMYB16. Moreover, AaSEP1 interacted with the JA ZIM-domain 8 (AaJAZ8) and served as an important factor in JA-mediated GST initiation. We also found that AaSEP1 interacted with CONSTITUTIVE PHOTOMORPHOGENIC 1 (AaCOP1), a major repressor of light signaling. In this study, we identified a MADS-box transcription factor that is induced by JA and light signaling and that promotes the initiation of GST in A. annua.


Assuntos
Artemisia annua , Tricomas , Tricomas/genética , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Integr Plant Biol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695649

RESUMO

Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.

3.
Plant Cell Physiol ; 64(7): 771-785, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37098222

RESUMO

Artemisinin, a sesquiterpene lactone obtained from Artemisia annua, is an essential therapeutic against malaria. YABBY family transcription factor AaYABBY5 is an activator of AaCYP71AV1 (cytochrome P450-dependent hydroxylase) and AaDBR2 (double-bond reductase 2); however, the protein-protein interactions of AaYABBY5, as well as the mechanism of its regulation, have not yet been elucidated. AaWRKY9 protein is a positive regulator of artemisinin biosynthesis that activates AaGSW1 (glandular trichome-specific WRKY1) and AaDBR2 (double-bond reductase 2). In this study, YABBY-WRKY interactions are revealed to indirectly regulate artemisinin production. AaYABBY5 significantly increased the activity of the luciferase (LUC) gene fused to the promoter of AaGSW1. Toward the molecular basis of this regulation, AaYABBY5 interaction with AaWRKY9 protein was found. The combined effectors AaYABBY5 + AaWRKY9 showed synergistic effects toward the activities of AaGSW1 and AaDBR2 promoters, respectively. In AaYABBY5 overexpression plants, the expression of GSW1 was found to be significantly increased when compared to that of AaYABBY5 antisense or control plants. In addition, AaGSW1 was identified as an upstream activator of AaYABBY5. Further, it was found that AaJAZ8, a transcriptional repressor of jasmonate signaling, interacted with AaYABBY5 and attenuated its activity. Co-expression of AaYABBY5 and anti-AaJAZ8 in A. annua increased the activity of AaYABBY5 toward artemisinin biosynthesis. This current study provides the first indication of the molecular basis of regulation of artemisinin biosynthesis through YABBY-WRKY interactions, which are regulated through AaJAZ8. This knowledge presents AaYABBY5 overexpression plants as a powerful genetic resource for artemisinin biosynthesis.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Artemisininas/metabolismo
4.
New Phytol ; 237(6): 2224-2237, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564967

RESUMO

Artemisinin, a sesquiterpene compound synthesized and stored in the glandular trichome of Artemisia annua leaves, has been used to treat malaria. Previous studies have shown that both light and jasmonic acid (JA) can promote the biosynthesis of artemisinin, and the promotion of artemisinin by JA is dependent on light. However, the specific molecular mechanism remains unclear. Here, we report a MYB transcription factor, AaMYB108, identified from transcriptome analysis of light and JA treatment, as a positive regulator of artemisinin biosynthesis in A. annua. AaMYB108 promotes artemisinin biosynthesis by interacting with a previously characterized positive regulator of artemisinin, AaGSW1. Then, we found that AaMYB108 interacted with AaCOP1 and AaJAZ8, respectively. The function of AaMYB108 was influenced by AaCOP1 and AaJAZ8. Through the treatment of AaMYB108 transgenic plants with light and JA, it was found that the promotion of artemisinin by light and JA depends on the presence of AaMYB108. Taken together, our results reveal the molecular mechanism of JA regulating artemisinin biosynthesis depending on light in A. annua. This study provides new insights into the integration of light and phytohormone signaling to regulate terpene biosynthesis in plants.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Fatores de Transcrição , Proteínas de Plantas/genética
5.
Plant Cell Environ ; 46(5): 1562-1581, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695201

RESUMO

Low light stress seriously decreased wheat grain number through the formation of aborted spike during the reproductive period and induced new tiller regeneration to offset the loss of grain number. However, the mechanism by which plants coordinate spike aborted growth and the regeneration of new tillers remains unknown. To better understand this coordinated process, morphological, physiological and transcriptomic analyses were performed under low light stress at the young microspore stage. Our findings indicated that leaves exhausted most stored carbohydrates in 1 day of darkness. However, spike and uppermost internode (UI) were converted from sink to source, due to increased abscisic acid (ABA) content and decreased cytokinin content. During this process, genes encoding amylases, Sugars Will Eventually be Exported Transporters (SWEET) and sucrose transporters or sucrose carriers (SUT/SUC) were upregulated in spike and UI, which degraded starch into soluble sugars and loaded them into the phloem. Subsequently, soluble sugars were transported to tiller node (TN) where cytokinin and auxin content increased and ABA content decreased, followed by unloading into TN cells by upregulated cell wall invertase (CWINV) genes and highly expressed H+ /hexose symporter genes. Finally, expansin genes integrated the sugar pathway and hormone pathway, and regulate the formation of new tillers directly.


Assuntos
Carboidratos , Triticum , Triticum/fisiologia , Ácido Abscísico/metabolismo , Proteínas de Membrana Transportadoras/genética , Sacarose/metabolismo , Citocininas , Açúcares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Exp Bot ; 74(18): 5441-5457, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37402253

RESUMO

Transcriptional regulation is crucial to control of gene expression. Both spatio-temporal expression patterns and expression levels of genes are determined by the interaction between cis-acting elements and trans-acting factors. Numerous studies have focused on the trans-acting factors that mediate transcriptional regulatory networks. However, cis-acting elements, such as enhancers, silencers, transposons, and natural variations in the genome, are also vital for gene expression regulation and could be utilized by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing to improve crop quality and yield. In this review, we discuss current understanding of cis-element-mediated transcriptional regulation in major crops, including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), as well as the latest advancements in gene editing techniques and their applications in crops to highlight prospective strategies for crop breeding.


Assuntos
Edição de Genes , Oryza , Edição de Genes/métodos , Sistemas CRISPR-Cas , Estudos Prospectivos , Genoma de Planta/genética , Melhoramento Vegetal , Produtos Agrícolas/genética , Regulação da Expressão Gênica , Oryza/genética , Transativadores/genética
7.
Inorg Chem ; 62(37): 15195-15205, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656912

RESUMO

Metal-organic frameworks (MOFs) have attracted extensive attention in methane (CH4) purification and storage. Specially, multinuclear cluster-based MOFs usually have prominent performance because of large cluster size and abundant open metal sites. However, compared to diverse combinations of organic linkers, one MOF with two or more multinuclear clusters is difficult to achieve. In this paper, we demonstrate a mixed multinuclear cluster strategy, which successfully led to three new heterometallic MOFs (SNNU-328-330) with the same common H3TATB [2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine] tritopic linker and six types of multinuclear clusters ([YCd(COO)4(µ2-H2O)], [YCd2(COO)8], [In3(COO)6(µ3-OH)], [In3Eu2(COO)9(µ3-OH)3(µ4-O)], [Y9(COO)12(µ3-OH)14] and [Y2Cd8(COO)16(µ2-H2O)4(µ3-OH)8]). Three MOF adsorbents all show great potentials to remove the impurities (CO2 and C2-hydrocarbons) in natural gas and show prominent high-pressure methane storage capacity. Among them, the ideal adsorbed solution theory separation ratios of equimolar C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 at 298 K for SNNU-328 reach to 29.7-16.0, 19.1-8.2, 33.2-10.3, and 74.3-8.5, which have surpassed many famous MOF adsorbents. Dynamic breakthrough experiments conducted at 273 and 298 K showed that SNNU-330 can separate CH4 from C2H2/CH4, C2H4/CH4, C2H6/CH4, and CO2/CH4 mixtures with the breakthrough interval times of about 48.2, 17.9, 37.2, and 17.1 min g-1 (273 K, 1 bar, v/v = 50/50, 2 mL min-1), respectively. Remarkably, SNNU-329 exhibits extremely high methane storage performance at 298 K with the total uptake and working capacity of 192 cm3 cm-3 (95 bar) and 171 cm3 cm-3 (65 bar) due to the synergistic effects of high surface area, suitable pore sizes, and multiple open metal sites.

8.
Inorg Chem ; 62(49): 20279-20287, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38032042

RESUMO

Comprehensive understanding of substituent groups located on the pore surface of metal-organic frameworks (which we call substituent engineering herein) can help to promote gas adsorption and catalytic performance through ligand functionalization. In this work, pore-space-partitioned metal-organic frameworks (PSP MOFs) were selected as a platform to evaluate the effect of organic functional groups on CO2 adsorption, separation, and catalytic conversion. Twelve partitioned acs metal-organic frameworks (pacs-MOFs, named SNNU-25-Rn here) containing different functional groups were synthesized, which can be classified into electron-donor groups (-OH, -NH2, -CH3, and -OCH3) and electron-acceptor groups (-NO2, -F, -Cl, and -Br). The experimental results showed that SNNU-25-Rn with electron donors usually perform better than those with electron acceptors for the comprehensive utilization of CO2. The CO2 uptake of the 12 SNNU-25-Rn MOFs ranged from 30.9 to 183.6 cm3 g-1 at 273 K and 1 bar, depending on the organic functional groups. In particular, SNNU-25-OH showed the highest CO2 adsorption, SNNU-25-CH3 had the highest IAST of CO2/CH4 (36.1), and SNNU-25-(OH)2 showed the best catalytic activity for the CO2 cycloaddition reaction. The -OH functionalized MOFs with excellent performance may be attributed to the Lewis acid-base and hydrogen-bonding interactions between -OH groups and the CO2 molecules. This work modulated the effect of the microenvironment of MOFs on CO2 adsorption, separation, and catalysis in terms of substituents, providing valuable information for the precise design of porous MOFs with a comprehensive utilization of CO2.

9.
Mol Biol Rep ; 50(4): 3557-3568, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787056

RESUMO

BACKGROUND: Lung cancer is a high incidence cancer on a worldwide basis and has become a major public health problem. Lung adenocarcinoma (LUAD) makes up approximately half of all lung cancers and is a threat to human health. Long non-coding RNAs (lncRNAs) is an important regulator of the development and progression of lung adenocarcinoma. In this manuscript we examined the role and potential mechanism of lncRNA PCAT6 in the development of LUAD. METHODS AND RESULTS: Differences in lncRNA PCAT6 levels between LUAD samples and normal samples were first explored in the GEPIA database. We found that lncRNA PCAT6 expression was elevated, which was also validated in lung adenocarcinoma tissues and cell lines. Using western blotting, CCK-8, EdU, wound healing and transwell assays, we found that knockdown of lncRNA PCAT6 inhibited EMT, proliferation, migration, and invasion of LUAD cells. We noted a predicted a binding site for lncRNA PCAT6 and miR-545-3p through conducting bioinformatic analyses, and their binding was subsequently verified by a dual-luciferase reporter assay. Rescue experiments confirmed that miR-545-3p inhibitor partially abolished the inhibition function of lncRNA PCAT6 knockdown on LUAD cells. In addition, we predicted the downstream target genes of miR-545-3p and verified them by RT-qPCR. We found that EGFR was reduced in the silence of lncRNA PCAT6 and upregulated after miR-545-3p inhibition. CONCLUSION: This study demonstrates that lncRNA PCAT6 promotes a more aggressive LUAD phenotype by sponging miR-545-3p. This finding may provide new ideas for the treatment of lung cancer.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Adenocarcinoma/genética , Adenocarcinoma/patologia , Pulmão/metabolismo
10.
J Clin Lab Anal ; 37(8): e24896, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198144

RESUMO

BACKGROUND: Sudden sensorineural hearing loss (SSNHL) is a multifactorial disease, and its etiology is still unknown. SSNHL may be caused by environmental factors and genetic changes. PCDH15 is associated with susceptibility to hearing loss. The relationship between PCDH15 and SSNHL remains unknown. METHODS: In this study, the potential association between PCDH15 polymorphism and SSNHL in Chinese population was evaluated. Two single nucleotide polymorphisms PCDH15-rs7095441 and rs11004085 in 195 SSNHL patients and 182 healthy controls were determined by TaqMan technology. RESULTS: In Chinese population, the TT genotype and T allele of rs7095441 are associated with increased susceptibility to SSNHL. The relationships between rs7095441 and the degree of hearing loss were analyzed, and TT genotype increased the risk of hearing loss. Among SSNHL patients, patients with TT genotype of rs7095441 have an increased risk of vertigo. CONCLUSION: This study found that the TT genotype of SNP rs7095441 can increase the risk of SSNHL in Chinese population.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , População do Leste Asiático , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/genética , Polimorfismo de Nucleotídeo Único/genética , Protocaderinas
11.
Eur Arch Otorhinolaryngol ; 280(4): 1603-1610, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36030467

RESUMO

PURPOSE: To assess awareness and recognition of vestibular function tests in otorhinolaryngology medical staffs, especially the vestibular evoked myogenic potentials (VEMP) testing in patients with obstructive sleep apnea (OSA). METHODS: A survey was delivered via either email or a social media app. The medical staffs of the Chinese Medical Association of Otolaryngology Head and Neck Surgery from various branches were enrolled. Study data were collected and managed with an online data collection tool. RESULTS: A total of 1781 emails and 623 social media messages were sent to 2404 otorhinolaryngology medical staffs. One hundred and fifty-seven of them participated in the survey, including 24 via emails and 133 via the social media app. Regarding the knowledge of VEMP, only 59 (37.6%) of them agreed that OSA could be related to vertigo/dizziness/imbalance and 28 (17.8%) believed that OSA could result in VEMP abnormalities and would factor this in diagnosing the impairment of the vestibular function of OSA patients. A total of 7.6% of the respondents had never heard of the VEMP tests. Responses regarding the minimum age at which VEMP are possible ranged from younger than 6 months to greater than 18 years of age. Beliefs regarding the utility and reliability of VEMP varied, with 'unsure' being the most frequent response. In addition, only 17.8% of otolaryngologists indicated some access to the VEMP test. CONCLUSIONS: Knowledge and beliefs about the role of VEMP in diagnosing otolithic organ dysfunction caused by OSA in otorhinolaryngology vary widely. It is important for otorhinolaryngology medical staffs to learn the latest literatures and updated knowledge through continuing education.


Assuntos
Otolaringologia , Apneia Obstrutiva do Sono , Potenciais Evocados Miogênicos Vestibulares , Humanos , Lactente , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Reprodutibilidade dos Testes , Inquéritos e Questionários , Apneia Obstrutiva do Sono/diagnóstico
12.
Cancer Cell Int ; 22(1): 375, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457028

RESUMO

BACKGROUND: During the development of cervical cancer, HPV infection causes a series of changes in transcription factors and microRNAs. But their relationships with pathogenic processes are not clear. METHODS: Base on previous study, to analyse the relationship among HPV16 infection and the related transcription factors, related miRNAs, so as to further understand the molecular mechanism of HPV16 infection to cervical cancer, around the HPV16 related miRNAs we have reported, the methods of bioinformatics prediction, histology, cell model in vitro and molecular interaction were used for prediction and validation respectively RESULTS: The results showed that NF-κB family members(c-Rel, p65 and p50) were identified as main HPV16rmiR-transcription factors. They have different expressive characteristics in cervical lesions and play tumorigenesis or progression roles in different periods of HPV16 infection. c-Rel, p65 and p50 act as mediators which link the HPV16 E5 and HPV16 related miRNAs. Among them, c-Rel affects the occurrence and progression of cervical cancer during whole HPV16 infection stage through miR133a-3p-modulated mir-379-369 cluster with a positive feedback way which targeted c-Rel itself and its positive regulator AKT3. CONCLUSION: So in the course of HPV16 infection, the E5, c-Rel, and miR-133a-3p form a positive feedback system which aim at mir-379-369 cluster for the whole process from HPV16 infection to cervical cancer.

13.
Inorg Chem ; 61(27): 10493-10501, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35763775

RESUMO

The development of paraffin-selective adsorbents is desirable but extremely challenging because adsorbents usually prefer olefin over paraffin. Herein, a new pore-window-partition strategy is proposed for the rational design of highly efficient paraffin-preferred metal-organic framework (MOF) adsorbents. The power of this strategy is demonstrated by stepwise installations of linear bidentate N-donor linkers into a prototype MOF (SNNU-201) to produce a series of partitional MOF adsorbents (SNNU-202-204). With continuous pore-window partitions from SNNU-201 to SNNU-204, the isosteric heat of adsorption can be tuned from -34.4 to -19.4 kJ mol-1 for ethylene and from -25.5 to -20.7 kJ mol-1 for ethane. Accordingly, partitional MOFs exhibit much higher ethane adsorption capacities, especially for SNNU-204 (104.6 cm3 g-1), representing nearly 4 times as much ethane as the prototypical counterpart (SNNU-201; 27.5 cm3 g-1) under ambient conditions. The C2H6/C2H4 ideal adsorbed solution theory selectivity, dynamic breakthrough experiments, and theoretical simulations further indicate that pore-window partition is a promising and universal strategy for the exploration of highly efficient paraffin-selective MOF adsorbents.

14.
Inorg Chem ; 61(35): 14131-14139, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35998379

RESUMO

The capture and fixation of CO2 under mild conditions is a cost-effective route to reduce greenhouse gases, but it is challenging because of the low conversion and selectivity issues. Metal-organic frameworks (MOFs) are promising in the fields of adsorption and catalysis because of their structural tunability and variability. However, the precise structural design of MOFs is always pursued and elusive. In this work, a metal-mixed MOF (SNNU-97-InV) was designed by precisely introducing single vanadium site into the isostructural In-MOF (SNNU-97-In). The single V sites clearly change the interactions between the MOF framework and CO2 molecules, leading to a 71.3% improvement in the CO2 adsorption capacity. At the same time, the enhanced light absorption enables SNNU-97-InV to efficiently convert CO2 into cyclic carbonates (CCs) with epoxides under illumination. Controlled experiments showed that the promoted performance of SNNU-97-InV may be that the V═O site can more easily combine with CO2 and convert them into an intermediate state under illumination, and the possible mechanism was thus speculated.

15.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014434

RESUMO

Novel covalent organic framework (COF) composites containing a bipyridine multimetal complex were designed and obtained via the coordination interaction between bipyridine groups and metal ions. The obtained Pt and polyoxometalate (POM)-loaded COF complex (POM-Pt@COF-TB) exhibited excellent oxidation of methane. In addition, the resultant Co/Fe-based COF composites achieved great performance in an electrocatalytic oxygen evolution reaction (OER). Compared with Co-modified COFs (Co@COF-TB), the optimized bimetallic modified COF composites (Co0.75Fe0.25@COF-TB) exhibited great performance for electrocatalytic OER activity, showing a lower overpotential of 331 mV at 10 mA cm-2. Meanwhile, Co0.75Fe0.25@COF-TB also possessed a great turnover frequency (TOF) value (0.119 s-1) at the overpotential of 330 mV, which exhibited high efficiency in the utilization of metal atoms and was better than that of many reported COF-based OER electrocatalysts. This work provides a new perspective for the future coordination of COFs with bimetallic or polymetallic ions, and broadens the application of COFs in methane conversion and electrocatalytic oxygen evolution.

16.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296667

RESUMO

A unique porous material, namely, MXene/SiO2 hybrid aerogel, with a high surface area, was prepared via sol-gel and freeze-drying methods. The hierarchical porous hybrid aerogel possesses a three-dimensional integrated network structure of SiO2 cross-link with two-dimensional MXene; it is used not only as a scaffold to prepare sulfur-based cathode material, but also as an efficient functional separator to block the polysulfides shuttle. MXene/SiO2 hybrid aerogel as sulfur carrier exhibits good electrochemical performance, such as high discharge capacities (1007 mAh g-1 at 0.1 C) and stable cycling performance (823 mA h g-1 over 200 cycles at 0.5 C). Furthermore, the battery assembled with hybrid aerogel-modified separator remains at 623 mA h g-1 over 200 cycles at 0.5 C based on the conductive porous framework and abundant functional groups in hybrid aerogel. This work might provide further impetus to explore other applications of MXene-based composite aerogel.

17.
Plant Biotechnol J ; 19(6): 1141-1154, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368973

RESUMO

Kernel number per spike determined by the spike or inflorescence development is one important agricultural trait for wheat yield that is critical for global food security. While a few important genes for wheat spike development were identified, the genetic regulatory mechanism underlying supernumerary spikelets (SSs) is still unclear. Here, we cloned the wheat FRIZZY PANICLE (WFZP) gene from one local wheat cultivar. WFZP is specifically expressed at the sites where the spikelet meristem and floral meristem are initiated, which differs from the expression patterns of its homologs FZP/BD1 in rice and maize, indicative of its functional divergence during species differentiation. Moreover, WFZP directly activates VERNALIZATION1 (VRN1) and wheat HOMEOBOX4 (TaHOX4) to regulate the initiation and development of spikelet. The haplotypes analysis showed that the favourable alleles of WFZP associated with spikelet number per spike (SNS) were preferentially selected during breeding. Our findings provide insights into the molecular and genetic mechanisms underlying wheat spike development and characterize the WFZP as elite resource for wheat molecular breeding with enhanced crop yield.


Assuntos
Oryza , Triticum , Alelos , Meristema/genética , Melhoramento Vegetal , Triticum/genética
18.
New Phytol ; 231(5): 2050-2064, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34043829

RESUMO

Plant glandular secretory trichomes (GSTs) produce various specialized metabolites. Increasing GST density represents a strategy to enhance the yield of these chemicals; however, the gene regulatory network that controls GST initiation remains unclear. In a previous study of Artemisia annua L., we found that a HD-ZIP IV transcription factor, AaHD1, promotes GST initiation by directly regulating AaGSW2. Here, we identified two AaHD1-interacting transcription factors, namely AaMIXTA-like 2 (AaMYB16) and AaMYB5. Through the generation and characterization of transgenic plants, we found that AaMYB16 is a positive regulator of GST initiation, whereas AaMYB5 has the opposite effect. Notably, neither of them regulates GST formation independently. Rather, they act competitively, by interacting and modulating AaHD1 promoter binding activity. Additionally, the phytohormone jasmonic acid (JA) was shown to be associated with the AaHD1-AaMYB16/AaMYB5 regulatory network through transcriptional regulation via a JASMONATE-ZIM DOMAIN (JAZ) protein repressor. These results bring new insights into the mechanism of GST initiation through regulatory complexes, which appear to have similar functions in a range of vascular plant taxa.


Assuntos
Artemisia annua , Artemisia annua/genética , Artemisia annua/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
19.
New Phytol ; 231(5): 1858-1874, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33973259

RESUMO

Artemisinin, isolated from Artemisia annua, is recommended as the preferred drug to fight malaria. Previous research showed that jasmonate (JA)-mediated promotion of artemisinin accumulation depended on light. However, the mechanism underlying the interaction of light and JA in regulating artemisinin accumulation is still unknown. We identified a WRKY transcription factor, AaWRKY9, using transcriptome analysis. The glandular trichome-specific AaWRKY9 positively regulates artemisinin biosynthesis by directly binding to the promoters of AaDBR2 and AaGSW1. The key regulator in the light pathway AaHY5 activates the expression of AaWRKY9 by binding to its promoter. In addition, AaWRKY9 interacts with AaJAZ9, a repressor in the JA signalling pathway. AaJAZ9 represses the transcriptional activation activity of AaWRKY9 in the absence of methyl jasmonate. Notably, in the presence of methyl jasmonate, the transcriptional activation activity of AaWRKY9 is increased. Taken together, our results reveal a novel molecular mechanism underlying AaWRKY9 contributes to light-mediated and jasmonate-mediated to regulate the biosynthesis of artemisinin in A. annua. Our study provides new insights into integrating the two signalling pathways to regulate terpene biosynthesis in plants.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Ciclopentanos , Oxilipinas , Proteínas de Plantas/genética , Tricomas
20.
Plant Cell ; 30(2): 324-346, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29371438

RESUMO

Successful floral meristem (FM) determinacy is critical for subsequent reproductive development and the plant life cycle. Although the phytohormones cytokinin and auxin interact to coregulate many aspects of plant development, whether and how cytokinin and auxin function in FM determinacy remain unclear. Here, we show that in Arabidopsis thaliana, cytokinin homeostasis is critical for FM determinacy. In this developmental context, auxin promotes the expression of AUXIN RESPONSE FACTOR3 (ARF3) to repress cytokinin activity. ARF3 directly represses the expression of ISOPENTENYLTRANSFERASE (IPT) family genes and indirectly represses LONELY GUY (LOG) family genes, both of which encode enzymes required for cytokinin biosynthesis. ARF3 also directly inhibits the expression of ARABIDOPSIS HISTIDINE KINASE4, a cytokinin receptor gene, resulting in reduced cytokinin activity. Consequently, ARF3 controls cell division by regulating cell cycle gene expression through cytokinin. In flowers, we show that AGAMOUS (AG) dynamically regulates the expression of ARF3 and IPTs, resulting in coordinated regulation of FM maintenance and termination through cell division. Moreover, genome-wide transcriptional profiling revealed both repressive and active roles for ARF3 in early flower development. Our findings establish a molecular link between AG and auxin/cytokinin and shed light on the mechanisms of stem cell maintenance and termination in the FM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Divisão Celular , Citocininas/metabolismo , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Homeostase , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Proteínas Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA