Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Phys Chem Chem Phys ; 22(27): 15340-15353, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32558872

RESUMO

In this study, Co nanoparticle-embedded N,O-codoped porous carbon nanospheres (C@Co) with abundant N and O doping, high graphitization, large specific surface area (319 m2 g-1) and a well-developed mesoporous structure were synthesized and characterized thoroughly, and were applied to activate peroxymonosulfate (PMS) for the degradation of methylene blue (MB). Various influential factors affecting the catalytic performance including C@Co dosage, PMS dosage, MB concentration, initial pH, temperature, and co-existing common anions and humic acid (HA) on the MB degradation were systematically investigated. The increase of the C@Co dosage (15-60 mg), PMS dosage (25-100 mg) and reaction temperature (278-308 K) promoted the MB degradation in the C@Co/PMS system. The best performance of the C@Co/PMS system was observed under weakly acidic or nearly neutral conditions. Both the MB concentration (25-100 mg L-1) and Cl- (5-100 mM), NO3- (10-500 mM), CO32- (10-300 mM), HCO3- (1-30 mM) and HA (2-40 mg L-1) had an inhibitory effect on MB degradation, and the degree of decrease in MB degradation increased as their concentrations were enhanced. Interestingly, HPO42- (1-100 mM) had an overall inhibitory effect on the degradation process of MB; however, in comparison with lower concentrations (1-10 mM), an attenuation of the inhibitory effect at higher concentrations (50-100 mM) could be observed. Moreover, the C@Co/PMS system also exhibited general applicability in eliminating various organic pollutants from water such as methyl orange, malachite green, safranine T, Congo red, Rhodamine B, ofloxacin and tetracycline. Classical radical-quenching tests and EPR measurements showed that both the non-radical pathway (major route, involving 1O2) and radical pathway (minor route, involving ˙OH, ˙SO4- and ˙O2-) contribute to the MB degradation. DFT calculations disclosed that the combination of Co-C interactions with graphitic N doping brought in catalytically active sites in C@Co where the charge states of some C atoms were significantly increased. The degradation intermediates of MB during the catalytic reaction were also identified by HPLC-MS and the possible degradation pathway was proposed. Overall, the resultant C@Co can be developed as a novel and efficient heterogeneous catalyst for activating PMS to degrade organic pollutants, and has potential application in environmental remediation.

2.
J Sep Sci ; 39(11): 2196-203, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27280701

RESUMO

Solid-phase extraction based on humic acid bonded silica followed by gas chromatography with electron capture detection was developed to determine fipronil and its metabolites in edible oil. To achieve the best extraction performance, we systematically investigated a series of solid-phase extraction parameters. Under the optimized conditions, the method was validated according to linearity, recovery, and precision. Good linearities were obtained with R(2) more than 0.9996 for all analytes. The limits of detection were between 0.3 and 0.5 ng/g, and the recoveries ranged from 83.1 to 104.0% at three spiked concentrations with intra- and interday relative standard deviation values less than 8.7%. Finally, the proposed method was applied to determine fipronil and its metabolites in 11 edible oil samples taken from Wuhan markets. Fipronil was detectable in four samples with concentrations ranging from 3.0 to 5.2 ng/g. In China, the maximum residue limits of fipronil in some vegetables and maize are 20 and 100 ng/g (GB/T 2763-2014), respectively. The residues of fipronil and its metabolites in commercial edible oils might exhibit some potential threat to human health as a result of high consumption of edible oil as part of daily intake.


Assuntos
Elétrons , Substâncias Húmicas , Óleos de Plantas/química , Pirazóis/análise , Dióxido de Silício/química , Extração em Fase Sólida , Cromatografia Gasosa , Pirazóis/metabolismo
3.
Front Microbiol ; 15: 1416614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933023

RESUMO

Background: While observational epidemiological studies have suggested an association between gut microbiota and Behçet's disease (BD), the causal relationship between the two remains uncertain. Methods: Statistical data were obtained from gut microbiome Genome-Wide Association Studies (GWAS) published by the MiBioGen consortium, and genetic variation points were screened as instrumental variables (IV). Mendelian randomization (MR) study was performed using inverse variance weighted (IVW), weighted median, MR-Egger regression, simple mode, and weighted mode methods to evaluate the causal relationship between gut microbiota (18,340 individuals) and BD (317,252 individuals). IVW was the main method of analysis. The stability and reliability of the results were verified using the leave-one-out method, heterogeneity test, and horizontal genetic pleiotropy test. Finally, a reverse MR analysis was performed to explore reverse causality. Results: Inverse variance weighted (IVW) results showed that the genus Parasutterella (OR = 0.203, 95%CI 0.055-0.747, p = 0.016), Lachnospiraceae NC2004 group (OR = 0.101, 95%CI 0.015-0.666, p = 0.017), Turicibacter (OR = 0.043, 95%CI 0.007-0.273, p = 0.001), and Erysipelatoclostridium (OR = 0.194, 95%CI 0.040-0.926, p = 0.040) were protective factors against BD, while Intestinibacter (OR = 7.589, 95%CI 1.340-42.978, p = 0.022) might be a risk factor for BD. Conclusion: Our study revealed the causal relationship between gut microbiota and BD. The microbiota that related to BD may become new biomarkers; provide new potential indicators and targets for the prevention and treatment of BD.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39192738

RESUMO

STUDY DESIGN: A retrospective, cross-sectional cohort study. OBJECTIVE: This study aims to investigate the association between paraspinal muscle parameters and single-segment degenerative lumbar spondylolisthesis (DLS). SUMMARY OF BACKGROUND DATA: The relationship between lumbar paraspinal muscles morphology and single-segment DLS remains unclear. METHODS: A retrospective review was conducted on 115 patients with L4/5 single-segment DLS and 105 subjects without DLS. Two independent investigators assessed the relative cross-sectional area and fat infiltration rate of the multifidus, erector spinae, and psoas major at L3/4, L4/5, and L5/S1 levels, comparing these measurements between the two groups. Additionally, binary logistic regression analysis was performed with DLS as the dependent variable to analyze the relative cross-sectional area and fat infiltration rate of different paraspinal muscles. Within the DLS group, the correlation between paraspinal muscle characteristics and the anteroposterior diameter of the spinal canal was examined. RESULTS: The fat infiltration rate of multifidus, erector spinae, and psoas major were higher in the DLS group than in the control group, while the relative cross-sectional area of multifidus and psoas major were lower in the DLS group. Binary logistic regression analysis revealed a significant correlation between fat infiltration rate of multifidus and psoas major and DLS. The relative cross-sectional area of multifidus and erector spinae was significantly smaller below the affected segment in the DLS group compared to the control group. A significant positive correlation was observed between the relative cross-sectional area of multifidus and erector spinae and the anteroposterior diameter of the spinal canal. CONCLUSION: There is a close association between paraspinal muscle degeneration and single-segment DLS, with increased relative cross-sectional area of the multifidus and psoas major possibly being risk factors for single-segment DLS. The restoration or enhancement of paraspinal muscle function could potentially serve as a pivotal target for the prevention and treatment of single-segment DLS. LEVEL OF EVIDENCE: III.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(1): 235-239, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-28245408

RESUMO

Histone methylation is one of the important epigenetic regulatory mechanisms, and plays a significant role in a variety of physiological and pathological processes. Many recent studies have shown that abnormalities of histone methylation are closely related with the initiation and progression of myeloid malignancies. The reversibility of histone methylation provides a broad prospect for the discovery and application of specific small molecule drugs. This review summarizes the recent progresses in this area and mainly focuses on the correlation of histone methylation with myeloid malignancies.


Assuntos
Histonas/metabolismo , Neoplasias/metabolismo , Epigênese Genética , Metilação
6.
J Chromatogr A ; 1406: 78-86, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26141271

RESUMO

Phytohormones, a collection of signal small molecules with various structures, regulate a series of physiological processes of plants. For instance, they regulate the growth and development, response to biotic and abiotic stresses. Quantification of trace endogenous phytohormones is essential to elucidate their molecular mechanisms in response to stresses. However, the structural and chemical diversity of phytohormones make it difficult to purify and enrich multiple phytohormones in one-step. In the current study, a method was developed to comprehensively profile phytohormones, including 8 cytokinins (CKs), indole-3-acetic acid (IAA), abscisic acid (ABA), jasmonic acid (JA) and 10 gibberellins (GAs) by Fe3O4@TiO2-based magnetic solid-phase extraction coupled with ultra-performance liquid chromatography-electrospray tandem mass spectrometry (Fe3O4@TiO2-based MSPE-UPLC-MS/MS). In the proposed method, the phytohormones in the acetonitrile extract of plant tissues were captured and purified by one-step MSPE using Fe3O4@TiO2 as a sorbent prior to UPLC-MS/MS analysis. The sensitivity, accuracy and reproducibility of the proposed analytical method were demonstrated to satisfy the profiling of multiple phytohormones in plant tissue. We then further used the Fe3O4@TiO2-based MSPE-UPLC-MS/MS method to explore the change of phytohormones in rice under Cd stress. The results showed that CKs, IAA, ABA, JA and biological active GAs all increased under Cd stress, suggesting that these phytohormones may take part in response to Cd stress. The study may promote the further understanding of the physiological functions of phytohormones in response to Cd stress.


Assuntos
Cromatografia Líquida , Oryza/química , Reguladores de Crescimento de Plantas/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Cádmio/química , Cádmio/farmacologia , Poluentes Ambientais/farmacologia , Fenômenos Magnéticos , Oryza/efeitos dos fármacos , Reprodutibilidade dos Testes , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA