Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 20(3): e1010503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498520

RESUMO

Coordination of growth and division in eukaryotic cells is essential for populations of proliferating cells to maintain size homeostasis, but the underlying mechanisms that govern cell size have only been investigated in a few taxa. The green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle that involves a long G1 phase followed by a rapid series of successive S and M phases (S/M) that produces 2n daughter cells. Two control points show cell-size dependence: the Commitment control point in mid-G1 phase requires the attainment of a minimum size to enable at least one mitotic division during S/M, and the S/M control point where mother cell size governs cell division number (n), ensuring that daughter distributions are uniform. tny1 mutants pass Commitment at a smaller size than wild type and undergo extra divisions during S/M phase to produce small daughters, indicating that TNY1 functions to inhibit size-dependent cell cycle progression. TNY1 encodes a cytosolic hnRNP A-related RNA binding protein and is produced once per cell cycle during S/M phase where it is apportioned to daughter cells, and then remains at constant absolute abundance as cells grow, a property known as subscaling. Altering the dosage of TNY1 in heterozygous diploids or through mis-expression increased Commitment cell size and daughter cell size, indicating that TNY1 is a limiting factor for both size control points. Epistasis placed TNY1 function upstream of the retinoblastoma tumor suppressor complex (RBC) and one of its regulators, Cyclin-Dependent Kinase G1 (CDKG1). Moreover, CDKG1 protein and mRNA were found to over-accumulate in tny1 cells suggesting that CDKG1 may be a direct target of repression by TNY1. Our data expand the potential roles of subscaling proteins outside the nucleus and imply a control mechanism that ties TNY1 accumulation to pre-division mother cell size.


Assuntos
Chlamydomonas , Chlamydomonas/metabolismo , Ciclo Celular/genética , Divisão Celular , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a RNA/genética , Tamanho Celular
2.
Acc Chem Res ; 57(5): 714-725, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349801

RESUMO

ConspectusThe hydrogenative conversion of both CO and CO2 into high-value multicarbon (C2+) compounds, such as olefins, aromatic hydrocarbons, ethanol, and liquid fuels, has attracted much recent attention. The hydrogenation of CO is related to the chemical utilization of various carbon resources including shale gas, biomass, coal, and carbon-containing wastes via syngas (a mixture of H2 and CO), while the hydrogenation of CO2 by green H2 to chemicals and liquid fuels would contribute to recycling CO2 for carbon neutrality. The state-of-the-art technologies for the hydrogenation of CO/CO2 to C2+ compounds primarily rely on a direct route via Fischer-Tropsch (FT) synthesis and an indirect route via two methanol-mediated processes, i.e., methanol synthesis from CO/CO2 and methanol to C2+ compounds. The direct route would be more energy- and cost-efficient owing to the reduced operation units, but the product selectivity of the direct route via FT synthesis is limited by the Anderson-Schulz-Flory (ASF) distribution. Selectivity control for the direct hydrogenation of CO/CO2 to a high-value C2+ compound is one of the most challenging goals in the field of C1 chemistry, i.e., chemistry for the transformation of one-carbon (C1) molecules.We have developed a relay-catalysis strategy to solve the selectivity challenge arising from the complicated reaction network in the hydrogenation of CO/CO2 to C2+ compounds involving multiple intermediates and reaction channels, which inevitably lead to side reactions and byproducts over a conventional heterogeneous catalyst. The core of relay catalysis is to design a single tandem-reaction channel, which can direct the reaction to the target product controllably, by choosing appropriate intermediates (or intermediate products) and reaction steps connecting these intermediates, and arranging optimized yet matched catalysts to implement these steps like a relay. This Account showcases representative relay-catalysis systems developed by our group in the past decade for the synthesis of liquid fuels, lower (C2-C4) olefins, aromatics, and C2+ oxygenates from CO/CO2 with selectivity breaking the limitation of conventional catalysts. These relay systems are typically composed of a metal or metal oxide for CO/CO2/H2 activation and a zeolite for C-C coupling or reconstruction, as well as a third or even a fourth catalyst component with other functions if necessary. The mechanisms for the activation of H2 and CO/CO2 on metal oxides, which are distinct from that on the conventional transition or noble metal surfaces, are discussed with emphasis on the role of oxygen vacancies. Zeolites catalyze the conversion of intermediates (including hydrocracking/isomerization of heavier hydrocarbons, methanol-to-hydrocarbon reactions, and carbonylation of methanol/dimethyl ether) in the relay system, and the selectivity is mainly controlled by the Brønsted acidity and the shape-selectivity or the confinement effect of zeolites. We demonstrate that the thermodynamic/kinetic matching of the relay steps, the proximity and spatial arrangement of the catalyst components, and the transportation of intermediates/products in sequence are the key issues guiding the selection of each catalyst component and the construction of an efficient relay-catalysis system. Our methodology would also be useful for the transformation of other C1 molecules via controlled C-C coupling, inspiring more efforts toward precision catalysis.

3.
Phytother Res ; 38(3): 1623-1650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302697

RESUMO

Hepatocellular carcinoma (HCC), presently the second leading cause of global cancer-related mortality, continues to pose significant challenges in the realm of medical oncology, impacting both clinical drug selection and mechanistic research. Recent investigations have unveiled autophagy-related signaling as a promising avenue for HCC treatment. A growing body of research has highlighted the pivotal role of autophagy-modulating natural products in inhibiting HCC progression. In this context, we provide a concise overview of the fundamental autophagy mechanism and delineate the involvement of autophagic signaling pathways in HCC development. Additionally, we review pertinent studies demonstrating how natural products regulate autophagy to mitigate HCC. Our findings indicate that natural products exhibit cytotoxic effects through the induction of excessive autophagy, simultaneously impeding HCC cell proliferation by autophagy inhibition, thereby depriving HCC cells of essential energy. These effects have been associated with various signaling pathways, including PI3K/AKT, MAPK, AMPK, Wnt/ß-catenin, Beclin-1, and ferroautophagy. These results underscore the considerable therapeutic potential of natural products in HCC treatment. However, it is important to note that the present study did not establish definitive thresholds for autophagy induction or inhibition by natural products. Further research in this domain is imperative to gain comprehensive insights into the dual role of autophagy, equipping us with a better understanding of this double-edged sword in HCC management.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Macroautofagia , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Autofagia , Proliferação de Células
4.
Front Immunol ; 15: 1418580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136027

RESUMO

Brain metastatic cancer poses a significant clinical challenge, with limited treatment options and poor prognosis for patients. In recent years, immunotherapy has emerged as a promising strategy for addressing brain metastases, offering distinct advantages over conventional treatments. This review explores the evolving landscape of tumor immunotherapy in the context of brain metastatic cancer, focusing on the intricate interplay between the tumor microenvironment (TME) and immunotherapeutic approaches. By elucidating the complex interactions within the TME, including the role of immune cells, cytokines, and extracellular matrix components, this review highlights the potential of immunotherapy to reshape the treatment paradigm for brain metastases. Leveraging immune checkpoint inhibitors, cellular immunotherapies, and personalized treatment strategies, immunotherapy holds promise in overcoming the challenges posed by the blood-brain barrier and immunosuppressive microenvironment of brain metastases. Through a comprehensive analysis of current research findings and future directions, this review underscores the transformative impact of immunotherapy on the management of brain metastatic cancer, offering new insights and opportunities for personalized and precise therapeutic interventions.


Assuntos
Neoplasias Encefálicas , Imunoterapia , Medicina de Precisão , Microambiente Tumoral , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Animais , Inibidores de Checkpoint Imunológico/uso terapêutico , Resultado do Tratamento
5.
J Ethnopharmacol ; 329: 118107, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599475

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall. (PLP), a traditional Chinese medicine, is recognized for its antioxidative and anti-apoptotic properties. Despite its potential medicinal value, the mechanisms underlying its efficacy have been less explored, particularly in alleviating acute liver injury (ALI) caused by excessive intake of acetaminophen (APAP). AIM OF THE STUDY: This study aims to elucidate the role and mechanisms of PLP in mitigating oxidative stress and apoptosis induced by APAP. MATERIALS AND METHODS: C57BL/6 male mice were pre-treated with PLP for seven consecutive days, followed by the induction of ALI using APAP. Liver pathology was assessed using HE staining. Serum indicators, immunofluorescence (IF), immunohistochemical (IHC), and transmission electron microscopy were employed to evaluate levels of oxidative stress, ferroptosis and apoptosis. Differential expression proteins (DEPs) in the APAP-treated and PLP pre-treated groups were analyzed using quantitative proteomics. Subsequently, the potential mechanisms of PLP pre-treatment in treating ALI were validated using western blotting, molecular docking, molecular dynamics simulations, and surface plasmon resonance (SPR) analysis. RESULTS: The UHPLC assay confirmed the presence of three compounds, i.e., albiflorin, paeoniflorin, and oxypaeoniflorin. Pre-treatment with PLP was observed to ameliorate liver tissue pathological damage through HE staining. Further confirmation of efficacy of PLP in alleviating APAP-induced liver injury and oxidative stress was established through liver function serum biochemical indicators, IF of reactive oxygen species (ROS) and IHC of glutathione peroxidase 4 (GPX4) detection. However, PLP did not demonstrate a significant effect in alleviating APAP-induced ferroptosis. Additionally, transmission electron microscopy and TUNEL staining indicated that PLP can mitigate hepatocyte apoptosis. PKC-ERK pathway was identified by proteomics, and subsequent molecular docking, molecular dynamics simulations, and SPR verified binding of the major components of PLP to ERK protein. Western blotting demonstrated that PLP suppressed protein kinase C (PKC) phosphorylation, blocking extracellular signal-regulated kinase (ERK) phosphorylation and inhibiting oxidative stress and cell apoptosis. CONCLUSION: This study demonstrates that PLP possesses hepatoprotective abilities against APAP-induced ALI, primarily by inhibiting the PKC-ERK cascade to suppress oxidative stress and cell apoptosis.


Assuntos
Acetaminofen , Apoptose , Doença Hepática Induzida por Substâncias e Drogas , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Paeonia , Animais , Acetaminofen/toxicidade , Paeonia/química , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia
6.
Phytomedicine ; 128: 155408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503153

RESUMO

BACKGROUND: Epigallocatechin-3-gallate (EGCG), the primary active compound in green tea, is recognized for its significant anti-inflammatory properties and potential pharmacological effects on inflammatory bowel disease (IBD). However, comprehensive preclinical evidence supporting the use of EGCG in treating IBD is currently insufficient. PURPOSE: To evaluate the efficacy of EGCG in animal models of IBD and explore potential underlying mechanisms, serving as a groundwork for future clinical investigations. METHODS: A systematic review of pertinent preclinical studies published until September 1, 2023, in databases such as PubMed, Embase, Web of Science, and Cochrane Library was conducted, adhering to stringent quality criteria. The potential mechanisms via which EGCG may address IBD were summarized. STATA v16.0 was used to perform a meta-analysis to assess IBD pathology, inflammation, and indicators of oxidative stress. Additionally, dose-response analysis and machine learning models were utilized to evaluate the dose-effect relationship and determine the optimal dosage of EGCG for IBD treatment. RESULTS: The analysis included 19 studies involving 309 animals. The findings suggest that EGCG can ameliorate IBD-related pathology in animals, with a reduction in inflammatory and oxidative stress indicators. These effects were observed through significant changes in histological scores, Disease Activity Index, Colitis Macroscopic Damage Index and colon length; a decrease in markers such as interleukin (IL)-1ß, IL-6 and interferon-γ; and alterations in malondialdehyde, superoxide dismutase, glutathione, and catalase levels. Subgroup analysis indicated that the oral administration route of EGCG exhibited superior efficacy over other administration routes. Dose-response analysis and machine learning outcomes highlighted an optimal EGCG dosage range of 32-62 mg/kg/day, with an intervention duration of 4.8-13.6 days. CONCLUSIONS: EGCG exhibits positive effects on IBD, particularly when administered at the dose range of 32 - 62 mg/kg/day, primarily attributed to its ability to regulate inflammation and oxidative stress levels.


Assuntos
Anti-Inflamatórios , Catequina , Catequina/análogos & derivados , Doenças Inflamatórias Intestinais , Estresse Oxidativo , Catequina/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Animais , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Chá/química , Relação Dose-Resposta a Droga
7.
Front Pharmacol ; 15: 1343193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313314

RESUMO

Background: Pathological progression from non-alcoholic fatty liver disease (NAFLD) to liver fibrosis (LF) to hepatocellular carcinoma (HCC) is a common dynamic state in many patients. Curcumin, a dietary supplement derived from the turmeric family, is expected to specifically inhibit the development of this progression. However, there is a lack of convincing evidence. Methods: The studies published until June 2023 were searched in PubMed, Web of Science, Embase, and the Cochrane Library databases. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) approach was used to evaluate the certainty of evidence. StataSE (version 15.1) and Origin 2021 software programs were used to analyze the critical indicators. Results: Fifty-two studies involving 792 animals were included, and three disease models were reported. Curcumin demonstrates a significant improvement in key indicators across the stages of NAFLD, liver fibrosis, and HCC. We conducted a detailed analysis of common inflammatory markers IL-1ß, IL-6, and TNF-α, which traverse the entire disease process. The research results reveal that curcumin effectively hinders disease progression at each stage by suppressing inflammation. Curcumin exerted hepatoprotective effects in the dose range from 100 to 400 mg/kg and treatment duration from 4 to 10 weeks. The mechanistic analysis reveals that curcumin primarily exerts its hepatoprotective effects by modulating multiple signaling pathways, including TLR4/NF-κB, Keap1/Nrf2, Bax/Bcl-2/Caspase 3, and TGF-ß/Smad3. Conclusion: In summary, curcumin has shown promising therapeutic effects during the overall progression of NAFLD-LF-HCC. It inhibited the pathological progression by synergistic mechanisms related to multiple pathways, including anti-inflammatory, antioxidant, and apoptosis regulation.

8.
Zhongguo Zhen Jiu ; 44(7): 779-86, 2024 Jul 12.
Artigo em Zh | MEDLINE | ID: mdl-38986590

RESUMO

OBJECTIVE: To evaluate clinical effect and safety on the basis of detecting the specific response of jing-well point in treatment of intractable insomnia with acupuncture by meridian differentiation. METHODS: Sixty-four patients with intractable insomnia were randomized into an observation group (32 cases, 1 case dropped out and 1 case was eliminated) and a control group (32 cases, 1 case was eliminated). In the observation group, the meridian imbalance value detected at the jing-well point was taken as the evidence so that the corresponding yuan-source and back-shu points were stimulated with acupuncture. In the control group, the routine acupuncture was operated at Baihui (GV 20), Sishencong (EX-HN 1), and bilateral Shenmen (HT 7), Sanyinjiao (SP 6), Shenmai (BL 62) and Zhaohai (KI 6). Besides, the detection at jing-well point was performed for blindness in the control group. In the two groups, the interventions were delivered once daily, 5 times a weeks and for consecutive 4 weeks. In the two groups, the scores of Pittsburgh sleep quality index (PSQI), insomnia severity index (ISI) and the TCM symptom scale were observed before treatment and after 2 and 4 weeks of treatment; the clinical effect and safety were evaluated after treatment; the changes of meridian imbalance value were observed before and after treatment and the correlation analysis with the total score of PSQI was conducted. RESULTS: After 2 and 4 weeks of treatment, except the scores for hypnotic drug in the two groups and sleep disorder after 2 weeks of treatment in the control group, the scores of the other factors and the total scores of PSQI were all reduced when compared with those before treatment in the two groups (P<0.05). After 4 weeks of treatment, except the scores for hypnotic drug in the two groups and sleep disorder in the control group, the scores of the other factors and the total scores of PSQI were lower than those after 2 weeks of treatment in the two groups (P<0.05). After 2 weeks of treatment, the scores for time to fall asleep, sleep efficiency and daytime dysfunction in the observation group were lower than those of the control group (P<0.05); and after 4 weeks of treatment, except the scores for sleep disorder and hypnotic drug, the scores of the other factors and the total score of PSQI in the observation group were all lower than those of the control group (P<0.05). After 2 and 4 weeks of treatment, ISI scores and the scores of TCM symptom scale decreased when compared with those before treatment (P<0.05), and the scores of these two scales after 4 weeks of treatment were lower than those after 2 weeks of treatment (P<0.05) in the two groups; and the scores in the observation group were lower than thoese in the control group (P<0.05). The total effective rate was 93.3% (28/30) in the observation group, higher than that (90.3% [28/31]) in the control group (P<0.05). Of 64 cases, there was only 1 case of mild hematoma in the control group; and no any other adverse events occurred. Among 64 cases, the meridians, with the imbalance frequency ≥30 times, included the pericardium meridian of hand-jueyin and the heart meridian of hand-shaoyin; those with the imbalance frequency ≥20 times, were the kidney meridian of foot-shaoyin, the triple energizers meridian of hand-shaoyang, the gallbladder meridian of foot-shaoyang, the spleen meridian of foot-taiyin and the stomach meridian of foot-yangming. Except the lung meridian of hand-taiyin in the control group, the imbalance value of each meridian was reduced after treatment (P<0.05, P<0.001, P<0.01), and the meridian imbalance value presented a linear positive correlation with the total score of PSQI in the two groups . CONCLUSION: Meridian differentiation acupuncture based on detecting the specific response of jing-well point can significantly improve the sleep quality and reduce the related symptoms in the patients with intractable insomnia. This therapy promotes the conversion of the meridians from the imbalance to the balance and is satisfactory in its safe operation.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/terapia , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Idoso , Adulto Jovem , Qualidade do Sono
9.
Chem Sci ; 15(30): 11937-11945, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092105

RESUMO

Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA