Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402700, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726773

RESUMO

Identity recognition as the first barrier of intelligent security plays a vital role, which is facing new challenges that are unable to meet the need of intelligent era due to low accuracy, complex configuration and dependence on power supply. Here, a finger temperature-driven intelligent identity recognition strategy is presented based on a thermogalvanic hydrogel (TGH) by actively discerning biometric characteristics of fingers. The TGH is a dual network PVA/Agar hydrogel in an H2O/glycerol binary solvent with [Fe(CN)6]3-/4- as a redox couple. Using a concave-arranged TGH array, the characteristics of users can be distinguished adequately even under an open environment by extracting self-existent intrinsic temperature features from five typical sites of fingers. Combined with machine learning, the TGH array can recognize different users with a high average accuracy of 97.6%. This self-powered identity recognition strategy is further applied to a smart lock, attaining a more reliable security protection from biometric characteristics than bare passwords. This work provides a promising solution for achieving better identity recognition, which has great advantages in intelligent security and human-machine interaction toward future Internet of everything.

2.
BMC Vet Res ; 20(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172782

RESUMO

BACKGROUND: Pregnancy toxemia is a common disease, which occurs in older does that are pregnant with multiple lambs in the third trimester. Most of the sick goats die within a few days, which can seriously impact the economic benefits of goat breeding enterprises. The disease is believed to be caused by malnutrition, stress, and other factors, that lead to the disorder of lipid metabolism, resulting in increased ketone content, ketosis, ketonuria, and neurological symptoms. However, the changes in gut microbes and their metabolism in this disease are still unclear. The objective of this experiment was to evaluate the effect of toxemia of pregnancy on the fecal microbiome and metabolomics of does. RESULTS: Eight pregnant does suspected of having toxemia of pregnancy (PT group) and eight healthy does during the same pregnancy (NC group) were selected. Clinical symptoms and pathological changes at necropsy were observed, and liver tissue samples were collected for pathological sections. Jugular venous blood was collected before morning feeding to detect biochemical indexes. Autopsy revealed that the liver of the pregnancy toxemia goat was enlarged and earthy yellow, and the biochemical results showed that the serum levels of aspartate aminotransferase (AST) and ß-hydroxybutyric acid (B-HB) in the PT group were significantly increased, while calcium (Ca) levels were significantly reduced. Sections showed extensive vacuoles in liver tissue sections. The microbiome analysis found that the richness and diversity of the PT microbiota were significantly reduced. Metabolomic analysis showed that 125 differential metabolites were screened in positive ion mode and enriched in 12 metabolic pathways. In negative ion mode, 100 differential metabolites were screened and enriched in 7 metabolic pathways. CONCLUSIONS: Evidence has shown that the occurrence of pregnancy toxemia is related to gut microbiota, and further studies are needed to investigate its pathogenesis and provide research basis for future preventive measures of this disease.


Assuntos
Doenças das Cabras , Microbiota , Pré-Eclâmpsia , Doenças dos Ovinos , Toxemia , Feminino , Gravidez , Ovinos , Animais , Pré-Eclâmpsia/veterinária , Cabras/metabolismo , Toxemia/veterinária , Metaboloma , Metabolômica , Carneiro Doméstico/metabolismo , RNA Ribossômico 16S
3.
BMC Genomics ; 24(1): 621, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853328

RESUMO

BACKGROUND: Puberty marks the end of childhood and achieve sexual maturation and fertility. The role of hypothalamic proteins in regulating puberty onset is unclear. We performed a comprehensive differential proteomics and phosphoproteomics analysis in prepubertal and pubertal goats to determine the roles of hypothalamic proteins and phosphoproteins during the onset of puberty. RESULTS: We used peptide and posttranslational modifications peptide quantification and statistical analyses, and identified 69 differentially expressed proteins from 5,057 proteins and 576 differentially expressed phosphopeptides from 1574 phosphorylated proteins. Combined proteomic and phosphoproteomics, 759 correlated proteins were identified, of which 5 were differentially expressed only at the protein level, and 201 were only differentially expressed at the phosphoprotein level. Pathway enrichment analyses revealed that the majority of correlated proteins were associated with glycolysis/gluconeogenesis, Fc gamma R-mediated phagocytosis, focal adhesion, GABAergic synapse, and Rap1 signaling pathway. These pathways are related to cell proliferation, neurocyte migration, and promoting the release of gonadotropin-releasing hormone in the hypothalamus. CTNNB1 occupied important locations in the protein-protein interaction network and is involved in focal adhesion. CONCLUSION: The results demonstrate that the proteins differentially expression only at the protein level or only differentially expressed at the phosphoprotein level and their related signalling pathways are crucial in regulating puberty in goats. These differentially expressed proteins and phosphorylated proteins may constitute the proteomic backgrounds between the two different stages.


Assuntos
Cabras , Proteômica , Animais , Feminino , Humanos , Cabras/metabolismo , Hipotálamo/metabolismo , Puberdade , Maturidade Sexual/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Fosfoproteínas/metabolismo
4.
BMC Genomics ; 23(1): 507, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831802

RESUMO

BACKGROUND: Changes in the abundance of ovarian proteins play a key role in the regulation of reproduction. However, to date, no studies have investigated such changes in pubescent goats. Herein we applied isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography-tandem mass spectrometry to analyze the expression levels of ovarian proteins in pre-pubertal (n = 3) and pubertal (n = 3) goats. RESULTS: Overall, 7,550 proteins were recognized; 301 (176 up- and 125 downregulated) were identified as differentially abundant proteins (DAPs). Five DAPs were randomly selected for expression level validation by Western blotting; the results of Western blotting and iTRAQ analysis were consistent. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that DAPs were enriched in olfactory transduction, glutathione metabolism, and calcium signaling pathways. Besides, gene ontology functional enrichment analysis revealed that several DAPs enriched in biological processes were associated with cellular process, biological regulation, metabolic process, and response to stimulus. Protein-protein interaction network showed that proteins interacting with CDK1, HSPA1A, and UCK2 were the most abundant. CONCLUSIONS: We identified 301 DAPs, which were enriched in olfactory transduction, glutathione metabolism, and calcium signaling pathways, suggesting the involvement of these processes in the onset of puberty. Further studies are warranted to more comprehensively explore the function of the identified DAPs and aforementioned signaling pathways to gain novel, deeper insights into the mechanisms underlying the onset of puberty.


Assuntos
Cabras , Proteômica , Animais , Feminino , Glutationa , Ovário , Proteômica/métodos , Maturidade Sexual
5.
Mol Reprod Dev ; 89(10): 443-458, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36001642

RESUMO

MicroRNA21 (MIR21) abundance in porcine oocytes and cumulus cells increases during in vitro maturation. The mechanism by which MIR21 regulates oocyte maturation and the effect on the developmental competence of subsequent embryos remains unclear. The objective of this study was to assess the function of MIR21 during porcine oocyte maturation and its effect on embryonic development. Treatment with peptide nucleic acid MIR21 inhibitor (MIR21-PNA), designed to specifically bind to and prevent MIR21 activity during in vitro oocyte maturation, decreased cumulus cell expansion, and the oocyte ability to achieve metaphase II maturation stage when compared to control groups. Following parthenogenetic activation, the cleavage rate at 48 h in the MIR21-PNA group was decreased (p ≤ 0.03) relative to the control groups. Additionally, liquid chromatography-mass spectrometry (LC-MS/MS) of oocyte and cumulus cell total protein following MIR21-PNA treatment during in vitro maturation identified changes in signaling pathways with primary involvement of glucose metabolism (GM) pathways. Furthermore, there was no difference (p = 0.21) in oocyte maturation of control and MIR21-PNA treated oocytes when cultured in pyruvate lacking medium. Finally, MIR21-PNA treatment decreased (p = 0.04) glutathione and increased (p = 0.07) reactive oxygen species production in the oocyte. These data suggest that MIR21 influences porcine oocyte maturation by regulating GM pathways in the cumulus-oocyte complex.


Assuntos
Ácidos Nucleicos Peptídicos , Gravidez , Feminino , Suínos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ácidos Nucleicos Peptídicos/metabolismo , Ácidos Nucleicos Peptídicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Técnicas de Maturação in Vitro de Oócitos/métodos , Células do Cúmulo/metabolismo , Oócitos/metabolismo , Desenvolvimento Embrionário , Glutationa/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Redes e Vias Metabólicas , Piruvatos/metabolismo , Piruvatos/farmacologia
6.
Reprod Biol Endocrinol ; 20(1): 100, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821045

RESUMO

Insulin-like growth factor-binding protein-5 (IGFBP-5) has recently been shown to alter the reproductive capacity by regulating insulin-like growth factor (IGF) bioavailability or IGF-independent effects. The present study aimed to investigate the effect and mechanism of IGFBP-5 on the onset of puberty in female rats. Immunofluorescence and real-time quantitative PCR were used to determine the expression and location of IGFBP-5 mRNA and protein distribution in the infant's hypothalamus-pituitary-ovary (HPO) axis prepuberty, peripuberty, puberty and adult female rats. Prepubertal rats with IGFBP-5 intracerebroventricular (ICV) were injected to determine the puberty-related genes expression and the concentrations of reproductive hormones. Primary hypothalamic cells were treated with IGFBP-5 to determine the expression of puberty-related genes and the Akt and mTOR proteins. Results showed that Igfbp-5 mRNA and protein were present on the HPO axis. The addition of IGFBP-5 to primary hypothalamic cells inhibited the expression of Gnrh and Igf-1 mRNAs (P < 0.05) and increased the expression of AKT and mTOR protein (P < 0.01). IGFBP-5 ICV-injection delayed the onset of puberty, reduced Gnrh, Igf-1, and Fshß mRNAs, and decreased the concentrations of E2, P4, FSH,serum LH levels and the ovaries weight (P < 0.05). More corpus luteum and fewer primary follicles were found after IGFBP-5 injection (P < 0.05).


Assuntos
Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina , Puberdade , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/biossíntese , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Puberdade/genética , Puberdade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
7.
Biol Reprod ; 104(5): 1008-1021, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33590832

RESUMO

N6-methyladenosine (m6A) catalyzed by METTL3 regulates the maternal-to-zygotic transition in zebrafish and mice. However, the role and mechanism of METTL3-mediated m6A methylation in blastocyst development remains unclear. Here, we show that METTL3-mediated m6A methylation sustains porcine blastocyst development via negatively modulating autophagy. We found that reduced m6A levels triggered by METTL3 knockdown caused embryonic arrest during morula-blastocyst transition and developmental defects in trophectoderm cells. Intriguingly, overexpression of METTL3 in early embryos resulted in increased m6A levels and these embryos phenocopied METTL3 knockdown embryos. Mechanistically, METTL3 knockdown or overexpression resulted in a significant increase or decrease in expression of ATG5 (a key regulator of autophagy) and LC3 (an autophagy marker) in blastocysts, respectively. m6A modification of ATG5 mRNA mainly occurs at 3'UTR, and METTL3 knockdown enhanced ATG5 mRNA stability, suggesting that METTL3 negatively regulated autophagy in an m6A dependent manner. Furthermore, single-cell qPCR revealed that METTL3 knockdown only increased expression of LC3 and ATG5 in trophectoderm cells, indicating preferential inhibitory effects of METTL3 on autophagy activity in the trophectoderm lineage. Importantly, autophagy restoration by 3MA (an autophagy inhibitor) treatment partially rescued developmental defects of METTL3 knockdown blastocysts. Taken together, these results demonstrate that METTL3-mediated m6A methylation negatively modulates autophagy to support blastocyst development.


Assuntos
Autofagia/genética , Blastocisto/metabolismo , Glicoproteínas de Membrana/genética , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Sus scrofa/fisiologia , Animais , Glicoproteínas de Membrana/metabolismo , Metiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sus scrofa/genética
8.
Reprod Biol Endocrinol ; 19(1): 107, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243771

RESUMO

BACKGROUND: Heat stress (HS) occurs when body heat accumulation exceeds heat dissipation and is associated with swine seasonal infertility. HS contributes to compromised oocyte integrity and reduced embryo development. Autophagy is a potential mechanism for the oocyte to mitigate the detrimental effects of HS by recycling damaged cellular components. METHODS: To characterize the effect of HS on autophagy in oocyte maturation, we utilized an in vitro maturation (IVM) system where oocytes underwent thermal neutral (TN) conditions throughout the entire maturation period (TN/TN), HS conditions during the first half of IVM (HS/TN), or HS conditions during the second half of IVM (TN/HS). RESULTS: To determine the effect of HS on autophagy induction within the oocyte, we compared the relative abundance and localization of autophagy-related proteins. Heat stress treatment affected the abundance of two well described markers of autophagy induction: autophagy related gene 12 (ATG12) in complex with ATG5 and the cleaved form of microtubule-associated protein 1 light chain 3 beta (LC3B-II). The HS/TN IVM treatment increased the abundance of the ATG12-ATG5 complex and exacerbated the loss of LC3B-II in oocytes. The B-cell lymphoma 2 like 1 protein (BCL2L1) can inhibit autophagy or apoptosis through its interaction with either beclin1 (BECN1) or BCL2 associated X, apoptosis regulator (BAX), respectively. We detected colocalization of BCL2L1 with BAX but not BCL2L1 with BECN1, suggesting that apoptosis is inhibited under the HS/TN treatment but not autophagy. Interestingly, low doses of the autophagy inducer, rapamycin, increased oocyte maturation. CONCLUSIONS: Our results here suggest that HS increases autophagy induction in the oocyte during IVM, and that artificial induction of autophagy increases the maturation rate of oocytes during IVM. These data support autophagy as a potential mechanism activated in the oocyte during HS to recycle damaged cellular components and maintain developmental competence.


Assuntos
Autofagia/fisiologia , Resposta ao Choque Térmico/fisiologia , Oócitos/fisiologia , Oogênese/fisiologia , Animais , Autofagia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Resposta ao Choque Térmico/efeitos dos fármacos , Imunossupressores/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Sirolimo/farmacologia , Suínos
9.
BMC Anesthesiol ; 21(1): 194, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289814

RESUMO

BACKGROUND: The objective of this study was to compare the analgesic potency of oxycodone versus morphine after laparoscopic deep infiltrating endometriosis resection. METHODS: Fifty patients undergoing laparoscopic deep infiltrating endometriosis resection were randomized to receive oxycodone or morphine intravenous-PCA after surgery. The primary outcome was opioid consumption during the 24 h after surgery. Secondary outcomes included time to first request for analgesia, the number of bolus, pain, sedation, nausea, vomiting, respiratory depression, and bradycardia. The prominent pain that caused patients to press the analgesic device was also recorded. RESULTS: Oxycodone consumption (14.42 ± 2.83) was less than morphine consumption (20.14 ± 3.83). Compared with the morphine group, the total number of bolus (78 vs 123) was less and the average time to first request for analgesia (97.27 ± 59.79 vs 142.17 ± 51) was longer in the oxycodone group. The incidence of nausea was higher in the morphine group than in the oxycodone group at 0-2 h (45.45% vs 17.19%), 2-4 h (50% vs 17.19%),12-24 h (40.91% vs 13.04%) and 0-24 h (39.17% vs 19.13%). The overall incidence of vomiting was higher in the morphine group (27.27% vs 13.92%). There was no difference in visual analogue scale score, the incidence of respiratory depression, and bradycardia between groups. Of the three types of pain that prompted patients to request analgesia, the incidence of visceral pain was highest (59.9%, P < 0.01). CONCLUSION: Oxycodone was more potent than morphine for analgesia after laparoscopic endometriosis resection, and oxycodone has fewer side effects than morphine. Name of the registry: Chinese Clinical Trial Registry Trial registration number: ChiCTR1900021870 URL of trial registry record: http://www.chictr.org.cn/edit.aspx?pid=35799&htm=4 Date of registration: 2019/3/13 0:00:00.


Assuntos
Endometriose/cirurgia , Morfina/administração & dosagem , Oxicodona/administração & dosagem , Dor Pós-Operatória/tratamento farmacológico , Adulto , Analgesia Controlada pelo Paciente/efeitos adversos , Analgesia Controlada pelo Paciente/métodos , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Laparoscopia , Morfina/efeitos adversos , Oxicodona/efeitos adversos , Estudos Prospectivos , Fatores de Tempo
10.
J Cell Mol Med ; 24(14): 7873-7883, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510855

RESUMO

It had been reported miR-182 was down-regulated after intestinal ischaemia/reperfusion (I/R) damage. However, its role and potential mechanisms are still unknown. This study was aimed to elucidate the function of miR-182 in intestinal I/R injury and the underlying mechanisms. The model of intestinal injury was constructed in wild-type and Deptor knockout (KO) mice. Haematoxylin-eosin staining, Chiu's score and diamine oxidase were utilized to detect intestinal damage. RT-qPCR assay was used to detected miR-182 expression. Electronic microscopy was used to detect autophagosome. Western blot was applied to detect the expression of Deptor, S6/pS6, LC3-II/LC3-I and p62. Dual-luciferase reporter assay was used to verify the relationship between miR-182 and Deptor. The results showed miR-182 was down-regulated following intestinal I/R. Up-regulation of miR-182 reduced intestinal damage, autophagy, Deptor expression and enhanced mTOR activity following intestinal I/R. Moreover, suppression of autophagy reduced intestinal damage and inhibition of mTOR by rapamycin aggravated intestinal damage following intestinal I/R. Besides, damage of intestine was reduced and mTOR activity was enhanced in Deptor KO mice. In addition, Deptor was the target gene of miR-182 and was indispensable for the protection of miR-182 on intestine under I/R condition. Together, our research implicated up-regulation of miR-182 inhibited autophagy to alleviate intestinal I/R injury via mTOR by targeting Deptor.


Assuntos
Enteropatias/etiologia , Enteropatias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/genética , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Imuno-Histoquímica , Enteropatias/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/ultraestrutura , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , Interferência de RNA
11.
Reprod Biol Endocrinol ; 18(1): 39, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393269

RESUMO

BACKGROUND: Germinal vesicle breakdown (GVBD) occurs during oocyte meiotic maturation, a period when transcriptional processes are virtually inactive. Thus, the maturing oocyte is reliant on processes such as post-transcriptional gene regulation (PTGR) to regulate the mRNA and protein repertoire. MicroRNA (miRNA) are a class of functional small RNA that target mRNA to affect their abundance and translational efficiency. Of particular importance is miRNA-21 (MIR21) due to its role in regulating programmed cell death 4 (PDCD4). The objective of this study was to characterize the abundance and regulation of MIR21 in relation to GVBD. METHODS: Oocytes were collected from aspirated porcine tertiary follicles. Relative abundance of mature MIR21 was quantified at 0, 8, 16, 24, 32, and 42 h of in vitro (IVM) with or without treatment with 3-isobutyl-1-methylxanthine (IBMX). RESULTS: IBMX increased abundance of MIR21 at 24 h approximately 30-fold compared to control oocytes (P < 0.05), and the induced increase in MIR21 abundance at 24 h was concomitant with premature depletion of PDCD4 protein abundance. To characterize the effect of artificially increasing MIR21 on oocyte competence without inhibiting GVBD, a MIR21 mimic, scrambled microRNA negative control, or nuclease free water was micro-injected into denuded oocytes at 21 h of IVM. The maturation rate of oocytes injected with synthetic MIR21 (63.0 ± 7.5%) was higher than oocytes injected with negative controls (P < 0.05). CONCLUSIONS: Inhibition of nuclear meiotic maturation via IBMX significantly increased MIR21 and decreased its target, PDCD4. Injection of a MIR21 mimic increased oocyte maturation rate. Our results indicate MIR21 is active and important during meiotic maturation of the oocyte.


Assuntos
1-Metil-3-Isobutilxantina/farmacologia , Meiose/efeitos dos fármacos , MicroRNAs/metabolismo , Oócitos/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Feminino , Meiose/fisiologia , MicroRNAs/genética , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Suínos
12.
Reprod Fertil Dev ; 32(7): 714-725, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32317096

RESUMO

RNA sequencing performed on goat matured oocytes and preimplantation embryos generated invivo enabled us to define the transcriptome for goat preimplantation embryo development. The largest proportion of changes in gene expression in goat was found at the 16-cell stage, not as previously defined at the 8-cell stage, and is later than in other mammalian species. In all, 6482 genes were identified to be significantly differentially expressed across all consecutive developmental stage comparisons, and the important signalling pathways involved in each development transition were determined. In addition, we identified genes that appear to be transcribed only at a specific stage of development. Using weighted gene coexpression network analysis, we found nine stage-specific modules of coexpressed genes that represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the goat transcriptional networks. Their association with other embryo genes suggests that they may have important regulatory roles in embryo development. Our cross-mammalian species transcriptomic comparisons demonstrate both conserved and goat-specific features of preimplantation development.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Cabras/embriologia , Oócitos/metabolismo , Transcriptoma/genética , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica no Desenvolvimento/genética , Oócitos/crescimento & desenvolvimento , Gravidez , Análise de Sequência de RNA/veterinária , Especificidade da Espécie
13.
J Cell Physiol ; 234(10): 17767-17774, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30805939

RESUMO

NESFATIN-1 acts as a neuroendocrine hormone to suppress gonadotropin secretion in the female goldfish and to prevent germinal vesicle breakdown of oocytes in the zebrafish. However, the expression and function of NESFATIN-1 in meiotic maturation and development of porcine oocytes remains elusive. Genomic structure of porcine NESFATIN-1 precursor nucleobindin 2 (NUCB2) is first characterized in detail and an evolutionally closer relationship of NESFATIN-1 between pig and rat is shown by phylogenetic analysis of multiple species. Additionally, immunofluorescence analysis revealed that NESFATIN-1 is predominantly expressed and localizes on the membrane of both theca cells and granulosa cells, but not expressed in oocytes. Real-time quantitative polymerase chain reaction showed that the abundance of NESFATIN-1 transcripts in granulosa cells progressively decreases during the developmental transition from small follicles to large follicles. Correspondingly, NESFATIN-1 could significantly enhance both the cleavage and blastocyst rate of parthenogenetically activated oocytes from small follicles (p < 0.05), whereas it did not affect meiotic maturation and development of oocytes from large follicles. Interestingly, we found that NESFATIN-1 significantly improves meiotic maturation of oocytes cultured in chemically defined medium in the absence of pyruvate compared with the control group (p < 0.05), suggesting that the NESFATIN-1 as a substitute for pyruvate exerts beneficial effects on porcine oocyte maturation. In conclusion, these results demonstrate that NESFATIN-1 facilitates both meiotic maturation and development of porcine oocytes.


Assuntos
Meiose/fisiologia , Nucleobindinas/metabolismo , Oócitos/metabolismo , Oócitos/fisiologia , Animais , Blastocisto/metabolismo , Blastocisto/fisiologia , Células Cultivadas , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/fisiologia , Oogênese/fisiologia , Filogenia , Suínos
14.
Reproduction ; 157(6): 501-510, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30870811

RESUMO

HASPIN kinase-catalyzed phosphorylation of histone H3 on threonine 3 (H3T3p) directs the activity and localization of chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC) to regulate chromosome condensation and segregation in both mitosis and meiosis. However, the function of HASPIN kinase in the meiotic maturation of porcine oocytes is not yet known. Here, we found that HASPIN mRNA is constantly expressed in porcine oocyte maturation and subsequent early embryo development. H3T3p is highly enriched on chromosomes at germinal vesicle breakdown (GVBD) stage and thereafter maintains a low level in progression through metaphase I (MI) to metaphase II (MII). Correspondingly, H3T3p was completely abolished in oocytes treated with an inhibitor of HASPIN kinase. Functionally, inhibition of HASPIN activity led to a significant reduction in the rate of oocyte meiotic maturation and the limited cumulus expansion. Additionally, HASPIN inhibition caused both spindle disorganization and chromosome misalignment in oocytes at MI and MII stage. Importantly, HASPIN inhibition severely prevented deacetylation of several highly conserved lysine (K) residues of histone H3 and H4 including H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 on the metaphase chromosomes during oocyte meiotic maturation. Taken together, these results demonstrate that HASPIN kinase regulates porcine oocyte meiotic maturation via modulating histone deacetylation.


Assuntos
Histonas/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Meiose/fisiologia , Oócitos/citologia , Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Acetilação , Animais , Feminino , Histonas/química , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Suínos
15.
Cancer Cell Int ; 19: 254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582910

RESUMO

BACKGROUND: Extracellular ATP (eATP) was shown to induce epithelial-mesenchymal transition (EMT), a very important early process in metastasis, in cancer cells via purinergic receptor signaling. However, the exact induction mechanisms are far from fully known. We previously described that eATP is internalized by cancer cells in vitro and in vivo by macropinocytosis in human non-small cell lung cancer A549 and other cancer cells, drastically elevates intracellular ATP levels, enhances cell proliferation and resistance to anticancer drugs. In this study, we tested the hypothesis that eATP and macropinocytosis-internalized eATP also induces EMT and other early steps of metastasis. METHODS: Floating cells, fencing, and transwell assays were used to show that ATP induces cell detachment, new colony formation, migration and invasion in human A549 and other lung cancer cells. Western blots were used to detect ATP-induced changes in EMT-related proteins; Confocal microscopy was used to demonstrate ATP-induced metastasis-related cell morphological changes. Inhibitors and siRNA knockdowns were used to determine P2X7's involvement in the ATP-induced EMT. CRISPR-Cas9 knockout of the SNX5 gene was used to identify macropinocytosis' roles in EMT and cancer cell growth both in vitro and in vivo. Student t-test and one-way ANOVA were used to determine statistical significance, P < 0.05 was considered significant. RESULTS: eATP potently induces expression of matrix metallopeptidases (MMPs), and detachment, EMT, migration, and invasion of lung cancer cells. The induction was independent of TGF-ß and semi-independent of P2X7 activation. eATP performs these functions not only extracellularly, but also intracellularly after being macropinocytically internalized to further enhance P2X7-mediated EMT, filopodia formation and other early steps of metastasis. The knockout of macropinocytosis-associated SNX5 gene significantly reduces macropinocytosis, slows down tumor growth, and changes tumor morphology in nude mice. CONCLUSIONS: Collectively, these results show that eATP's functions in these processes not only from outside of cancer cells but also inside after being macropinocytotically internalized. These findings shed light on eATP's initiator and effector roles in almost every step in early metastasis, which calls for rethinking and rebalancing energy equations of intracellular biochemical reactions and the Warburg effect, and identifies eATP and macropinocytosis as novel targets for potentially slowing down EMT and preventing metastasis.

16.
J Surg Res ; 243: 363-370, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31277013

RESUMO

BACKGROUND: Intestinal ischemia/reperfusion (I/R) is a grave condition related to high morbidity and mortality. Autophagy, which can induce a new cell death named type II programmed cell death, has been reported in some intestinal diseases, but little is known in I/R-induced intestinal injury. In this study, we aimed to explore the role of autophagy in intestinal injury induced by I/R and its potential mechanisms. MATERIALS AND METHODS: The rats pretreated with rapamycin or 3-methyladenine had intestinal I/R injury. After reperfusion, intestinal injury was measured by Chiu's score, intestinal mucosal wet-to-dry ratio, and lactic acid level. Intestinal mucosal oxidative stress level was measured by malondialdehyde and superoxide dismutase. Autophagosome, LC3, and p62 were detected to evaluate autophagy level. Mammalian target of rapamycin (mTOR) was detected to explore potential mechanism. RESULTS: Chiu's score, intestinal mucosal wet-to-dry ratio, lactic acid level, malondialdehyde level, autophagosomes, and LC3-II/LC3-I were significantly increased, and superoxide dismutase level and expression of p62 were significantly decreased in intestinal mucosa after intestinal ischemia/reperfusion. Pretreatment with rapamycin significantly aggravated intestinal injury evidenced by increased Chiu's score, intestinal mucosal wet-to-dry ratio and lactic acid level, increased autophagy level evidenced by increased autophagosomes and LC3-II/LC3-I and decreased expression of p62, and downregulated expression of p-mTOR/mTOR. On the contrary, pretreatment with 3-methyladenine significantly attenuated intestinal injury and autophagy level and upregulated expression of p-mTOR/mTOR. CONCLUSIONS: In summary, autophagy was significantly enhanced in intestinal mucosa after intestinal ischemia/reperfusion, and inhibition of autophagy attenuated intestinal injury induced by I/R through activating mTOR signaling.


Assuntos
Adenina/análogos & derivados , Autofagia/efeitos dos fármacos , Enteropatias/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Enteropatias/enzimologia , Enteropatias/etiologia , Enteropatias/patologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/ultraestrutura , Masculino , Malondialdeído/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Sirolimo , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
17.
BMC Genomics ; 18(1): 164, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196477

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are involved in regulating animal development, however, their function in the onset of puberty in goats remain largely unexplored. To identify the genes controlling the regulation of puberty in goats, we measured lncRNA and mRNA expression levels from the hypothalamus. RESULTS: We applied RNA sequencing analysis to examine the hypothalamus of pubertal (case; n = 3) and prepubertal (control; n = 3) goats. Our results showed 2943 predicted lncRNAs, including 2012 differentially expressed lncRNAs, which corresponded to 5412 target genes. We also investigated the role of lncRNAs that act cis and trans to the target genes and found a number of lncRNAs involved in the regulation of puberty and reproduction, as well as several pathways related to these processes. For example, oxytocin signaling pathway, sterol biosynthetic process, and pheromone receptor activity signaling pathway were enriched as Kyoto Encyclopedia of Genes and Genomes (KEGG) or gene ontology (GO) analyses showed. CONCLUSION: Our results clearly demonstrate that lncRNAs play an important role in regulating puberty in goats. However, further research is needed to explore the functions of lncRNAs and their predicted targets to provide a detailed expression profile of lncRNAs on goat puberty.


Assuntos
Cabras/genética , RNA Longo não Codificante/genética , Maturidade Sexual/genética , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Genômica/métodos , Cabras/metabolismo , Anotação de Sequência Molecular , Transcriptoma
18.
Biol Reprod ; 96(4): 758-771, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379447

RESUMO

WD repeat-containing protein 5 (WDR5), a member of conserved WD40 protein family, is an essential component of the mixed lineage leukemia (MLL) complexes, which are crucial for numerous key biological processes including methylation of histone H3 lysine 4 (H3K4), self-renewal of embryonic stem cells, and formation of induced pluripotent stem cells. The expression pattern and functional role of WDR5 during porcine preimplantation embryonic development, however, remain unknown. Our results showed that the transcripts and protein of WDR5 exhibited stage-specific expression pattern in porcine early embryos. Moreover, blastocyst rate and total cell number per blastocyst were reduced by RNAi-mediated silencing of WDR5 or pharmacological inhibition of WDR5. Knockdown of WDR5 also disturbed the expression of several pluripotency genes. Interestingly, tri-methylation of H3K4 (H3K4me3) level was dramatically increased by WDR5 depletion. Further analysis revealed that loss of MLL3 phenocopied WDR5 knockdown, triggering increased H3K4me3 level. Simultaneously, WDR5 depletion significantly decreased the levels of histone H4 lysine 16 acetylation (H4K16ac) and its writer males absent on the first (MOF). Last but not least, WDR5 knockdown induced DNA damage and DNA repair defects during porcine preimplantation development. Taken together, results of described studies establish that WDR5 plays a significant role in porcine preimplantation embryos probably through regulating key epigenetic modifications and genome integrity.


Assuntos
Blastocisto/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Suínos/embriologia , Animais , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
19.
Reprod Biol Endocrinol ; 15(1): 81, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985764

RESUMO

BACKGROUND: There are many variables affecting the onset of puberty in animals, including genetic, nutritional, and environmental factors. Recent studies suggest that epigenetic regulation, especially DNA methylation, plays a majorrole in the regulation of puberty. However, there have been no reports on DNA methylation of the pubertal genome. METHODS: We investigated DNA methylation in the female rat hypothalamus at prepuberty and puberty using reduced representation bisulfite sequencing technology. The identified genes and signaling pathways exhibiting changes to DNA methylation in pubertal rats were determined by Gene Ontogeny and Kyoto Encyclopedia of Genes and Genomes analysis. RESULTS: The distribution of the three types of methylated C bases in promoter and CpG island (CGI) regions in the hypothalamus was as follows: 87.79% CG, 3.05% CHG, 9.16% CHH for promoters, and 88.35% CG, 3.21% CHG, 88.35% CHH for CGI in prepubertal rats; and 90.78% CG, 2.13% CHG, 7.09% CHH for promoters, and 88.59% CG, 88.59% CHG, 8.35% CHH for CGI in pubertal animals. CG showed the highest percentage of methylation, and was the highest methylation state in CGI. Compared to prepubertal hyoyhalamus samples, we identified ten genes with altered methylation in promoter regions in the pubertal hypothalamus samples, and 43 genes with altered methylation in the CGI. Changes in DNA methylation were found in gonadotropin-releasing hormone signaling pathways, and the oocyte meiosis pathway. CONCLUSION: Our results demonstrate changes in DNA methylation occur in female rats from prepuberty to puberty suggestng DNA methylation may play a crucial role in the regulation of puberty onset. This study provides essential information for future studies on the role of epigenetics in the regulation of puberty.


Assuntos
Metilação de DNA , Epigênese Genética , Hipotálamo/metabolismo , Regiões Promotoras Genéticas , Maturidade Sexual/genética , Animais , Ilhas de CpG , Feminino , Hormônio Liberador de Gonadotropina/genética , Ratos , Análise de Sequência de DNA/métodos , Sulfitos/química
20.
J Immunol ; 195(1): 317-28, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25987744

RESUMO

Intestinal ischemia/reperfusion (I/R) injury, in which macrophages play a key role, can cause high morbidity and mortality. The switch from classically (M1) to alternatively (M2) activated macrophages, which is dependent on the activation of STAT6 signaling, has been shown to protect organs from I/R injuries. In the current study, the effects of recombinant Trichinella spiralis cathepsin B-like protein (rTsCPB) on intestinal I/R injury and the potential mechanism related to macrophage phenotypes switch were investigated. In a mouse I/R model undergoing 60-min intestinal ischemia followed by 2-h or 7-d reperfusion, we demonstrated that intestinal I/R caused significant intestinal injury and induced a switch from M2 to M1 macrophages, evidenced by a decrease in levels of M2 markers (arginase-1 and found in inflammatory zone protein), an increase in levels of M1 markers (inducible NO synthase and CCR7), and a decrease in the ratio of M2/M1 macrophages. RTsCPB reversed intestinal I/R-induced M2-M1 transition and promoted M1-M2 phenotype switch evidenced by a significant decrease in M1 markers, an increase in M2 markers, and the ratio of M2/M1 macrophages. Meanwhile, rTsCPB significantly ameliorated intestinal injury and improved intestinal function and survival rate of animals, accompanied by a decrease in neutrophil infiltration and an increase in cell proliferation in the intestine. However, a selective STAT6 inhibitor, AS1517499, reversed the protective effects of rTsCPB by inhibiting M1 to M2 transition. These findings suggest that intestinal I/R injury causes a switch from M2 to M1 macrophages and that rTsCPB ameliorates intestinal injury by promoting STAT6-dependent M1 to M2 transition.


Assuntos
Antígenos de Helmintos/imunologia , Catepsina B/imunologia , Intestinos/efeitos dos fármacos , Macrófagos/imunologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Antígenos de Helmintos/administração & dosagem , Antígenos de Helmintos/genética , Arginase/genética , Arginase/imunologia , Catepsina B/administração & dosagem , Catepsina B/genética , Regulação da Expressão Gênica , Intestinos/imunologia , Intestinos/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/classificação , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Fenótipo , Pirimidinas/farmacologia , Receptores CCR7/genética , Receptores CCR7/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/mortalidade , Fator de Transcrição STAT6/antagonistas & inibidores , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Transdução de Sinais , Análise de Sobrevida , Trichinella spiralis/química , Trichinella spiralis/imunologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA